

INTELLIGENCE- AUGMENTED LEARNING

NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Edited by

Violla Makhzoum

**INTELLIGENCE-AUGMENTED LEARNING: NEW
DIRECTIONS IN EDUCATIONAL PRACTICE - 2026**

ISBN: 978-625-6080-75-1

DOI: 10.5281/zenodo.18418004

Edited By
Violla MAKHZOUM

January / 2026
Ankara, Türkiye

Copyright © Farabi Yayınevi

Date: 29.01.2026

Farabi Publishing House
Ankara, Türkiye
www.farabiyayinevi.org

All rights reserved no part of this book may be reproduced in any form, by photocopying or by any electronic or mechanical means, including information storage or retrieval systems, without permission in writing from both the copyright owner and the publisher of this book.

© Farabi Publishers 2026
The Member of International Association of Publishers

The digital PDF version of this title is available Open Access and distributed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 license (<http://creativecommons.org/licenses/by-nc/4.0/>) which permits adaptation, alteration, reproduction and distribution for noncommercial use, without further permission provided the original work is attributed. The derivative works do not need to be licensed on the same terms.

adopted by Esma AKSAKAL
ISBN: 978-625-6080-75-1

Copyright © 2025 by Farabi Academic Publishers All rights reserved

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

EDITOR

Violla MAKHZOUM

AUTHORS

Prof. Dr. Gianluca Pasquale TODISCO

Sorina CORMAN

Moses Adeolu AGOI

Ismail Olaniyi MURAINA

Solomon Onen ABAM

Bashir Oyeniran AYINDE

Wasiu Olatunde OLADAPO

Ali AGUERD

TABLE OF CONTENTS

PREFACE.....	i
CHAPTER 1	
COMMUNITY-BASED PRACTICE AND ARTIFICIAL INTELLIGENCE IN HIGHER EDUCATION PEDAGOGY: EXPERIENTIAL LEARNING, REFLEXIVITY, AND EDUCATIONAL QUALITY	
Sorina CORMAN.....	1
CHAPTER 2	
REIMAGINING PEDAGOGY IN THE AGE OF GENERATIVE AI: FROM TEACHER-CENTRED TO INTELLIGENCE- AUGMENTED LEARNING	
Moses Adeolu AGOI	
Ismail Olaniyi MURAINA	
Solomon Onen ABAM	
Bashir Oyeniran AYINDE	
Wasiu Olatunde OLADAPO	27
CHAPTER 3	
THE SYMBIOTIC RELATIONSHIP BETWEEN CREATIVE EXPRESSION AND DESIGNED ENVIRONMENTS: FROM PSYCHOLOGICAL ORIGINS TO THERAPEUTIC OUTCOMES	
Prof. Dr. Gianluca Pasquale TODISCO	55

CHAPTER 4
INTEGRATING IN SILICO PRACTICAL WORK IN HIGH
SCHOOL LIFE AND EARTH SCIENCES EDUCATION:
PEDAGOGICAL APPROACHES, DIGITAL TOOLS, AND
FUTURE PERSPECTIVES

Ali AGUERD 78

PREFACE

The rapid development of artificial intelligence and digital technologies is transforming how knowledge is produced, shared, and experienced in educational settings. Learning environments are no longer limited to traditional classroom boundaries; instead, they are increasingly supported and expanded by intelligent systems, data-driven tools, and interactive digital platforms.

Intelligence-Augmented Learning: New Directions in Educational Practice brings together diverse scholarly contributions that explore how AI-supported approaches, generative technologies, creative environments, and digital simulations are reshaping pedagogy. The chapters in this volume examine both theoretical frameworks and practical applications, highlighting new models of teaching, experiential learning, and interdisciplinary educational design.

This book aims to support educators, researchers, and practitioners who seek to understand and responsibly integrate intelligence-augmented methods into contemporary education. We hope the work contributes to ongoing discussions and inspires further innovation in educational practice.

Editorial Team
January 2026
Türkiye

CHAPTER 1

**COMMUNITY-BASED PRACTICE AND ARTIFICIAL
INTELLIGENCE IN HIGHER EDUCATION
PEDAGOGY: EXPERIENTIAL LEARNING,
REFLEXIVITY, AND EDUCATIONAL QUALITY**

¹Sorina CORMAN

¹Lucian Blaga University of Sibiu, Faculty of Social and Human Sciences, Center for Social Research, Community Development Lab., Romania, sorina.corman@ulbsibiu.ro, ORCID ID: 0000-0002-7841-732X

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

INTRODUCTION

In recent decades, higher education has undergone a profound pedagogical transformation, driven by the growing recognition that academic learning cannot be reduced to the transmission of theoretical knowledge alone. Universities are increasingly expected to prepare graduates who are capable of critical thinking, ethical judgment, adaptability, and meaningful engagement with complex social realities. Within this context, practice-based learning has emerged as a central pedagogical strategy, particularly in disciplines oriented toward social intervention, education, public service, and community development.

Community-based practice represents a distinctive form of experiential learning in which academic knowledge is integrated with real-world contexts through structured engagement with organizations, institutions, and communities. Unlike traditional internships conceived primarily as employability tools, community-based practice emphasizes reflexivity, social responsibility, and reciprocal learning between universities and their external partners. It positions practice not as an auxiliary component of the curriculum, but as a pedagogical space in which knowledge is produced, questioned, and reconfigured through experience.

At the same time, higher education is increasingly shaped by the expansion of digital technologies and, more recently, by the rapid development of artificial intelligence (AI). While AI is often discussed in relation to automation, efficiency, or assessment, its pedagogical significance in practice-based education remains underexplored. There is a risk that AI may be framed either as a neutral technological solution or as a threat to academic integrity, without sufficient attention to its potential role as a cognitive and reflective support for learning processes.

This chapter argues that community-based practice and artificial intelligence should not be treated as separate or competing elements of contemporary pedagogy. Instead, when embedded within a coherent pedagogical framework, AI can function as a mediator of experiential and reflexive learning, supporting personalization, feedback, and critical reflection without replacing human judgment or ethical responsibility.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

From this perspective, AI does not redefine the aims of higher education, but reshapes the conditions under which learning through practice is designed, supported, and evaluated. The purpose of this chapter is to examine community-based practice as a pedagogical framework in higher education and to explore the role of artificial intelligence in enhancing its educational quality. The analysis adopts a balanced approach, combining theoretical perspectives on experiential and reflexive learning with a critical discussion of AI-supported pedagogical practices. Particular attention is paid to ethical considerations, quality assurance, and the implications for curriculum design and institutional responsibility.

1. EXPERIENTIAL AND REFLEXIVE LEARNING AS PEDAGOGICAL FOUNDATIONS

Experiential learning constitutes one of the most influential paradigms for understanding learning processes in practice-oriented education. Rather than viewing knowledge as a static body of information transmitted from teacher to student, experiential learning emphasizes the dynamic transformation of experience into understanding. The classic experiential learning cycle conceptualizes learning as an iterative process involving concrete experience, reflective observation, abstract conceptualization, and active experimentation. Within this framework, experience alone is insufficient; learning emerges through systematic reflection and conceptual integration.

In higher education, practice-based learning provides the conditions for experiential learning by situating students in authentic professional and social contexts. These contexts are characterized by uncertainty, ethical dilemmas, institutional constraints, and interpersonal dynamics that cannot be fully simulated in classroom settings. As a result, practice becomes a privileged site for the development of professional judgment, critical thinking, and contextualized knowledge. However, experiential learning reaches its pedagogical potential only when it is accompanied by structured reflexive processes. Reflexive learning extends beyond the mere description of experiences, requiring learners to interrogate their assumptions, values, and decision-making processes.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Reflection in action and reflection on action are central mechanisms through which students learn to connect theory with practice and to recognize the ethical and social implications of their professional roles. From a pedagogical perspective, reflexivity transforms practice from a technical exercise into a process of meaning-making. Students are encouraged to analyze not only what they do, but why they act in certain ways, how institutional and cultural factors shape their choices, and how their actions affect others. This reflexive dimension is particularly significant in community-based practice, where learning is embedded in relationships with organizations and beneficiaries.

Within this context, artificial intelligence can play a supportive but not substitutive role in facilitating experiential and reflexive learning. Digital tools supported by AI can assist students in documenting their experiences through reflective journals, learning portfolios, or structured prompts that guide critical analysis. AI-driven feedback systems may help identify patterns in students' reflections, highlight areas for deeper inquiry, and support formative assessment processes.

Nevertheless, it is essential to emphasize that reflexivity cannot be automated. AI may support the organization and articulation of reflection, but the interpretation of experience, the negotiation of meaning, and the ethical evaluation of action remain fundamentally human processes. Pedagogical responsibility therefore, lies in designing learning environments in which AI tools enhance reflective capacity without undermining student agency or critical autonomy.

By grounding community-based practice in experiential and reflexive learning theories, higher education institutions can ensure that practice is not reduced to task completion or skill acquisition alone. Instead, practice becomes an integral component of a pedagogical approach that fosters deep learning, ethical awareness, and professional identity formation in an increasingly complex and technologically mediated world.

***INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE***

2. COMMUNITY-BASED PRACTICE AS PEDAGOGICAL DESIGN

Community-based practice should not be understood merely as a curricular requirement or an organizational arrangement between universities and external partners. From a pedagogical perspective, it represents a deliberate design choice that structures learning objectives, learning activities, and assessment around authentic social and professional contexts. When conceived intentionally, community-based practice becomes a core component of curriculum architecture, aligning experiential learning with academic standards and educational values.

Pedagogical design in practice-based education involves the systematic integration of learning outcomes, experiential activities, and reflective mechanisms. Unlike traditional classroom-based instruction, where content delivery often precedes application, community-based practice reverses this logic by placing experience at the center of the learning process. Students encounter real-world situations first and subsequently engage in analysis, conceptualization, and theoretical integration. This approach enhances the relevance of academic knowledge and supports the development of transferable competencies such as problem-solving, communication, ethical reasoning, and adaptability.

A key characteristic of community-based practice as pedagogical design is its relational nature. Learning emerges through interaction with mentors, colleagues, institutional frameworks, and community members. These relationships create a complex learning environment in which students must navigate multiple expectations, norms, and values. Pedagogically, this complexity offers opportunities for deep learning, provided that students receive appropriate guidance and support. Without intentional design, however, practice risks becoming fragmented, inconsistent, or overly dependent on the quality of individual placements. Community-based practice gains pedagogical relevance when it is situated within broader community dynamics and local development processes, as learning is shaped not only by institutional arrangements but also by social mobility, economic structures, and community-level interactions (Croitoru, 2022).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Work-Integrated Learning (WIL) and service-learning models provide conceptual frameworks for understanding how community-based practice can be embedded pedagogically within higher education curricula. These models emphasize the alignment between academic objectives and societal needs, highlighting reciprocity as a defining principle. Learning is not unidirectional; communities and organizations also benefit from students' contributions, perspectives, and analytical skills. From a pedagogical standpoint, this reciprocity reinforces the ethical dimension of education and situates learning within a broader social responsibility framework.

Within such designs, artificial intelligence can function as an enabling infrastructure that supports coherence and continuity across learning experiences. AI-supported platforms may facilitate communication between students, academic supervisors, and community mentors, ensuring that learning objectives remain visible and aligned throughout the practice period. By organizing documentation, timelines, and feedback processes, AI tools can reduce administrative burdens and allow educators to focus on pedagogical guidance and reflective dialogue.

Moreover, AI can support pedagogical design by assisting in the alignment of experiential tasks with learning outcomes. For example, AI-driven systems may help map students' activities to competency frameworks or highlight gaps between intended and achieved learning outcomes. This does not imply delegating pedagogical judgment to algorithms, but rather using AI as a decision-support tool that enhances transparency and coherence in curriculum implementation.

An important pedagogical challenge in community-based practice concerns the diversity of student experiences. Placements differ in scope, complexity, and institutional culture, which can lead to uneven learning opportunities. Pedagogical design must therefore incorporate mechanisms that ensure comparability without standardization that undermines contextual learning. Reflective assignments, structured learning agreements, and shared assessment criteria provide such mechanisms by focusing evaluation on learning processes rather than on identical tasks.

In this context, AI-supported tools can contribute to pedagogical equity by offering adaptive support tailored to individual learning trajectories.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Students may receive differentiated prompts for reflection, guidance adapted to their level of autonomy, or feedback calibrated to their developmental needs. When used responsibly, AI can help address variability in practice contexts while preserving the situated nature of experiential learning.

However, the pedagogical value of community-based practice depends ultimately on intentional human design and oversight. AI cannot define educational purposes, ethical priorities, or disciplinary standards. These remain the responsibility of educators and institutions. Pedagogical design must therefore ensure that AI is embedded within a framework of academic judgment, reflective supervision, and ethical accountability.

By conceptualizing community-based practice as pedagogical design rather than as a logistical arrangement, higher education institutions can strengthen the educational quality of practice-based learning. When combined with experiential and reflexive learning principles and supported though not governed by artificial intelligence, community-based practice becomes a powerful vehicle for meaningful learning, professional formation, and civic engagement.

3. ARTIFICIAL INTELLIGENCE AND PERSONALIZED LEARNING IN PRACTICE-BASED EDUCATION

3.1 Pedagogical Opportunities, Limits, and Reflexive Integration

The growing integration of artificial intelligence into higher education has intensified debates regarding personalization, efficiency, and the future of teaching and learning. In practice-based education, these debates acquire particular significance, as learning is situated in complex, unpredictable environments that resist standardization. Within this context, AI should not be approached as a technological solution imposed upon pedagogical processes, but rather as a mediating tool whose educational value depends on the way it is pedagogically framed, ethically governed, and institutionally integrated. Personalized learning has long been a central aspiration of higher education pedagogy.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Practice-based learning, by its very nature, already embodies a form of personalization, as students engage with distinct organizational cultures, social contexts, and professional challenges. However, this contextual diversity can generate uneven learning experiences, placing increased demands on supervision, assessment, and feedback. Artificial intelligence has the potential to support personalized learning in such contexts by enhancing the responsiveness and adaptability of pedagogical support systems.

From a pedagogical standpoint, AI can contribute to personalization by assisting students in structuring their learning processes during practice. AI-supported learning environments may provide adaptive prompts for reflection, encourage goal setting aligned with individual learning needs, and support self-monitoring of progress. For example, students may receive tailored reflective questions based on prior entries in learning journals or portfolios, prompting deeper analysis of recurring challenges, ethical dilemmas, or decision-making patterns encountered during practice. In this sense, AI functions as a cognitive scaffold that supports metacognition rather than as a source of authoritative knowledge.

Feedback represents another critical dimension of personalized learning in practice-based education. High-quality feedback is essential for transforming experience into learning, yet it is often constrained by time, institutional resources, and the availability of academic supervisors. AI-supported feedback systems may assist by identifying thematic patterns in students' reflective texts, highlighting areas that require further elaboration, or signaling inconsistencies between stated learning objectives and reported activities. When used appropriately, such systems can enhance formative assessment by complementing, rather than replacing, human feedback.

Nevertheless, the pedagogical use of AI in feedback processes raises important questions regarding authorship, interpretation, and responsibility. Feedback generated or mediated by AI lacks the contextual sensitivity and ethical discernment that characterize human pedagogical judgment. As a result, AI-supported feedback should be understood as provisional and dialogical, serving as a starting point for reflection and discussion rather than as a definitive evaluation.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Pedagogical design must therefore ensure that students are encouraged to critically engage with AI-generated suggestions and to situate them within their own experiential and ethical understanding.

Personalized learning in practice-based education is also closely linked to learner autonomy and self-regulation. Practice contexts demand that students take responsibility for their learning, navigate ambiguity, and make decisions under conditions of uncertainty. AI tools can support these processes by helping students articulate learning goals, track progress, and reflect on decision-making strategies. However, there is a risk that excessive reliance on AI guidance may undermine the development of professional judgment and resilience. Pedagogically, this necessitates a careful balance between support and challenge, ensuring that AI enhances students' capacity for independent thinking rather than fostering dependency.

Equity considerations further complicate the role of AI in personalized learning. While AI has the potential to mitigate disparities by providing additional support to students who may lack access to informal mentoring or institutional resources, it can also reproduce or exacerbate existing inequalities if access to technology, digital literacy, or data protection varies across contexts. Pedagogical responsibility therefore extends beyond the design of AI-supported tools to include institutional strategies for ensuring equitable access, transparency, and inclusivity in practice-based education.

Importantly, the integration of AI into personalized learning must be aligned with the broader pedagogical purposes of community-based practice. The aim of such practice is not merely individual skill development, but the formation of reflective professionals capable of ethical engagement with social realities. AI should therefore be embedded within pedagogical frameworks that foreground values such as responsibility, solidarity, and critical awareness. This implies that AI itself becomes an object of reflection, prompting students to consider how technological systems shape professional practices, power relations, and decision-making processes in contemporary societies. From this perspective, the pedagogical significance of AI lies not only in its functional capabilities, but also in its capacity to stimulate reflexive inquiry.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Engaging students in critical discussions about the role of AI in professional and community contexts can deepen their understanding of both technology and practice. Such discussions reinforce the idea that professional competence in the digital age includes not only technical proficiency, but also ethical literacy and critical judgment.

In summary, artificial intelligence offers meaningful opportunities to support personalized learning in practice-based education, provided that its integration is guided by clear pedagogical principles. AI can enhance reflection, feedback, and self-regulation, but it cannot substitute for human interpretation, ethical reasoning, or pedagogical responsibility. When positioned as a mediating and reflective tool within a community-based pedagogical framework, AI contributes to educational quality while preserving the human-centered aims of higher education.

3.2 Pedagogical Risks and Safeguards in AI-Enhanced Practice-Based Learning

The pedagogical integration of artificial intelligence into practice-based education is not a neutral or purely technical process. While AI offers significant opportunities for personalization, feedback, and learning analytics, its use also introduces a series of pedagogical risks that must be explicitly acknowledged and addressed. Ignoring these risks may undermine the educational value of community-based practice and compromise the formative aims of higher education.

One of the primary pedagogical risks associated with AI-enhanced learning environments concerns the reduction of learning to measurable indicators. Practice-based learning is inherently complex, involving tacit knowledge, ethical judgment, emotional engagement, and contextual understanding. These dimensions resist full quantification. When AI systems prioritize easily measurable outputs—such as frequency of activity, completion of tasks, or linguistic patterns in reflective texts—there is a danger that learning will be evaluated through proxies that fail to capture its deeper qualitative dimensions. Pedagogically, this may lead to an instrumentalization of reflection, where students focus on producing outputs that align with algorithmic expectations rather than engaging in genuine critical inquiry.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

A related risk involves the standardization of reflective processes. Reflection is a deeply personal and situated activity, shaped by individual experiences, disciplinary traditions, and cultural contexts. AI-supported prompts and feedback mechanisms, while useful for scaffolding learning, may inadvertently impose uniform structures on reflection. If overused or insufficiently contextualized, such tools can constrain students' interpretive freedom and limit the diversity of reflective voices. Pedagogical design must therefore ensure that AI-generated structures remain flexible and open-ended, allowing students to appropriate them creatively rather than conforming to rigid templates.

Another significant concern relates to the erosion of pedagogical relationships. Community-based practice relies heavily on dialogue, mentorship, and trust between students, academic supervisors, and community partners. There is a risk that AI-mediated systems, if positioned as primary channels of feedback or monitoring, may weaken these relational dimensions by displacing human interaction. From a pedagogical standpoint, learning through practice depends not only on information processing, but also on relational engagement and ethical modeling. Safeguarding the centrality of human relationships is therefore essential when integrating AI into practice-based learning environments.

Issues of student autonomy and responsibility also require careful consideration. While AI tools can support self-regulation, there is a risk that students may become overly dependent on algorithmic guidance, particularly in situations characterized by uncertainty or ambiguity. Practice-based learning is intended to cultivate professional judgment, resilience, and decision-making capacity. Excessive reliance on AI recommendations may hinder the development of these qualities by narrowing students' interpretive horizons or discouraging risk-taking and independent problem-solving. Pedagogical safeguards must therefore be designed to ensure that AI enhances, rather than substitutes for, autonomous learning. Data-related risks further complicate the pedagogical landscape. Practice-based education often involves sensitive information about organizations, communities, and beneficiaries. The use of AI systems for documentation, analysis, or feedback raises concerns about data protection, confidentiality, and informed consent.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

From a pedagogical perspective, these issues are not merely technical but educational, as they shape students' understanding of professional ethics and responsibility. Safeguards must include clear protocols for data governance, transparency regarding data use, and opportunities for students to critically reflect on the ethical implications of digital data practices.

To address these risks, pedagogical safeguards must be embedded at multiple levels. At the curricular level, learning objectives should explicitly include reflexive engagement with technology, ensuring that students are encouraged to question the role and limits of AI in professional practice. At the instructional level, educators must maintain an active role in interpreting AI-supported outputs and mediating feedback through dialogue and critical discussion. At the institutional level, policies should articulate clear principles for the ethical and pedagogical use of AI, aligned with broader commitments to educational quality, equity, and social responsibility.

Importantly, the identification of risks should not be interpreted as an argument against the use of AI in practice-based education. Rather, it underscores the necessity of intentional pedagogical governance. When AI is integrated thoughtfully, with attention to its limitations and potential unintended consequences, it can contribute to a more reflective, inclusive, and supportive learning environment. Conversely, when adopted uncritically, it risks reinforcing instrumental conceptions of learning and weakening the human-centered foundations of education.

This transitional analysis prepares the ground for a deeper examination of the ethical dimensions of AI-supported pedagogy, which will be addressed in the following section. By foregrounding risks and safeguards, the discussion emphasizes that ethical considerations are inseparable from pedagogical design and institutional responsibility in the context of AI-enhanced community-based practice.

3.3 Pedagogical Conditions for the Responsible Integration of Artificial Intelligence in Practice-Based Learning

Beyond identifying opportunities, risks, and safeguards, the pedagogical integration of artificial intelligence in practice-based learning requires a clear articulation of appropriate implementation frameworks.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

These frameworks should specify the conditions under which AI can contribute meaningfully to educational quality. These conditions are not primarily technological, but pedagogical and institutional in nature. They define the boundaries within which AI supports learning without distorting its formative purposes.

A first essential condition concerns pedagogical intentionality. AI should be integrated into practice-based learning only when its use is clearly aligned with articulated learning objectives. The introduction of AI tools must respond to identifiable pedagogical needs—such as supporting reflection, enhancing feedback, or facilitating self-regulation—rather than being driven by technological availability or institutional pressure to innovate. Without such intentionality, AI risks becoming an add-on that increases complexity without adding educational value.

A second condition relates to the primacy of human pedagogical judgment. In practice-based education, learning outcomes are often emergent and context-dependent. Educators play a crucial role in interpreting students' experiences, mediating feedback, and supporting ethical reasoning. AI systems may assist by organizing information or highlighting patterns, but they cannot replace the interpretive and normative functions of pedagogical expertise. Responsible integration therefore requires clear role differentiation, in which AI remains subordinate to human decision-making.

The third condition concerns reflexive engagement with technology as part of learning itself. Pedagogically, AI should not only support learning processes but also become an object of critical reflection. Students engaged in community-based practice increasingly encounter AI-driven systems in professional and institutional contexts. Integrating reflective discussions on the role, limits, and implications of AI within practice-based curricula enhances students' digital and ethical literacy. This reflexive stance reinforces the educational aim of forming professionals capable of critically engaging with technological systems rather than uncritically adopting them.

A further condition involves transparency and intelligibility. For AI-supported tools to function pedagogically, students and educators must have a basic understanding of how these tools operate, what types of data they process, and what their limitations are.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Black-box systems undermine trust and hinder meaningful pedagogical engagement. Transparency supports not only ethical accountability but also learning, as it allows students to critically interpret AI-generated outputs and situate them within their experiential knowledge.

Equally important is the condition of pedagogical flexibility. Practice-based learning is characterized by diversity in contexts, student trajectories, and institutional arrangements. AI systems integrated into such environments must allow for adaptation and contextual sensitivity rather than enforcing uniform pathways or standardized responses. Pedagogical flexibility ensures that AI supports individualized learning while respecting the situated nature of practice.

Finally, responsible integration of AI in practice-based learning depends on institutional support and governance. Educators require time, training, and organizational backing to design and supervise AI-enhanced pedagogical environments effectively. Institutional frameworks should provide guidelines for ethical use, data protection, and quality assurance, while avoiding overly prescriptive regulations that constrain pedagogical innovation. In this sense, institutional responsibility complements pedagogical responsibility, creating the conditions for sustainable and reflective use of AI in education.

Taken together, these pedagogical conditions emphasize that the value of AI in practice-based learning does not derive from its technical sophistication, but from its alignment with educational purposes, ethical principles, and institutional commitments. By articulating clear conditions for responsible integration, higher education institutions can move beyond polarized debates about AI toward a more nuanced understanding of its pedagogical role.

This analysis completes the examination of artificial intelligence within the framework of community-based practice and prepares the conceptual transition to the following section, which addresses the ethical dimensions of AI-supported pedagogy in a more explicit and normative manner.

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

**4. ETHICAL DIMENSIONS OF AI-SUPPORTED
PEDAGOGY IN COMMUNITY-BASED PRACTICE**

The integration of artificial intelligence into practice-based education raises ethical questions that extend beyond technical compliance or data protection requirements. In a pedagogical context, ethics concerns the values, responsibilities, and power relations embedded in educational design, teaching practices, and institutional decisions. When AI is introduced into community-based practice, ethical considerations become inseparable from pedagogical quality, as learning is situated in real social contexts involving institutions, communities, and vulnerable actors.

At a foundational level, ethical pedagogy in higher education is grounded in respect for student agency, human dignity, and the formative aims of education. Community-based practice is explicitly oriented toward these aims, as it seeks to cultivate reflective professionals who are capable of ethical judgment and socially responsible action. The use of AI in this context must therefore be evaluated in terms of whether it supports or undermines these educational purposes.

One central ethical issue concerns autonomy and agency in learning. AI-supported systems can influence how students reflect, what they prioritize, and how their learning is evaluated. While such systems may offer valuable guidance, there is a risk that algorithmic structures subtly shape learning behaviors in ways that are opaque to students. Ethical pedagogy requires that students remain active agents in their learning processes, capable of questioning feedback, negotiating meanings, and making informed decisions. This implies that AI-generated inputs should be framed as provisional supports rather than authoritative judgments, and that students should be encouraged to critically engage with them.

A second ethical dimension relates to fairness and equity. Community-based practice often involves students with diverse backgrounds, resources, and prior experiences. AI has the potential to reduce inequities by providing additional scaffolding and personalized support. At the same time, it may reproduce structural inequalities if access to technology, digital literacy, or institutional support is uneven.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Ethical responsibility therefore extends to ensuring equitable access to AI-supported learning tools and to monitoring their differential effects on student learning. From a pedagogical perspective, fairness must be understood not as uniform treatment, but as responsiveness to diverse learning needs.

Transparency and accountability constitute another core ethical concern. In educational settings, decisions about assessment, feedback, and progression have significant consequences for students. When AI tools are involved in these processes, it is essential that their role is transparent and intelligible. Students and educators should be informed about how AI systems contribute to pedagogical decisions, what types of data are used, and where human judgment intervenes. Ethical pedagogy rejects black-box decision-making and affirms the principle that accountability for educational outcomes ultimately rests with educators and institutions, not with algorithms.

Ethical considerations are particularly salient in relation to data use and confidentiality. Practice-based learning often generates sensitive information about organizations, communities, and individuals. The use of AI for documentation, analysis, or feedback must be governed by strict principles of data minimization, informed consent, and purpose limitation. Importantly, these principles should not be treated merely as legal obligations, but as educational opportunities. Engaging students in discussions about data ethics during practice-based learning reinforces professional responsibility and ethical awareness in digitally mediated environments.

Beyond these procedural concerns, AI-supported pedagogy raises deeper ethical questions about the meaning of education and professional formation. Community-based practice is intended to foster empathy, moral reasoning, and commitment to the public good. If AI tools prioritize efficiency, optimization, or performance metrics without regard for these values, they risk narrowing the educational horizon. Ethical pedagogy requires that AI be integrated in ways that preserve the relational, dialogical, and value-laden dimensions of learning through practice. From an institutional perspective, ethical responsibility also involves governance and leadership. Universities must articulate clear ethical frameworks for the pedagogical use of AI, aligned with their educational missions and social responsibilities.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Such frameworks should support educators rather than constrain them, providing guidance on ethical principles while allowing pedagogical flexibility. Institutional ethics committees, professional development initiatives, and participatory decision-making processes can contribute to a culture of ethical reflection around AI in education.

Crucially, ethics in AI-supported pedagogy should not be confined to rules and safeguards. It must also encompass the cultivation of ethical reflexivity among students and educators. By integrating critical discussions of AI into practice-based curricula, universities can help students understand how technological systems shape professional practices, social relations, and power dynamics. This reflexive approach reinforces the idea that ethical competence is not a static set of norms, but a capacity for ongoing critical engagement.

In sum, the ethical dimensions of AI-supported pedagogy are integral to the quality and legitimacy of community-based practice in higher education. Ethical integration of AI requires respect for student agency, commitment to fairness and transparency, protection of data and relationships, and alignment with the formative aims of education. When approached in this way, AI does not diminish the ethical foundations of pedagogy, but becomes a catalyst for deeper reflection on what it means to learn, teach, and act responsibly in a technologically mediated society.

4.1 Transitional Synthesis: Integrating Practice, Artificial Intelligence, and Pedagogical Responsibility

The preceding sections have developed a coherent pedagogical argument centered on community-based practice as a formative framework in higher education and on the role of artificial intelligence as a mediating, rather than determining, factor within this framework. By grounding practice-based learning in experiential and reflexive learning theories, the chapter has emphasized that educational quality emerges through the systematic integration of experience, reflection, and conceptual understanding.

Community-based practice has been conceptualized as an intentional pedagogical design that aligns learning objectives, authentic activities, and reflective assessment within real social contexts.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Within this design, artificial intelligence has been examined not as an autonomous educational agent, but as a supportive infrastructure capable of enhancing personalization, feedback, and self-regulation when embedded within human-centered pedagogical processes.

The analysis of opportunities, risks, and conditions for AI integration has highlighted the necessity of pedagogical intentionality, human judgment, and institutional governance. Rather than promoting technological determinism, the chapter has argued for a reflective approach in which AI supports learning without displacing relational, ethical, and interpretive dimensions that are central to professional formation. This perspective positions educators and institutions as responsible agents in shaping the educational use of AI, rather than passive adopters of technological systems.

Ethical considerations have further reinforced the inseparability of pedagogy and responsibility in AI-supported practice-based education. Issues of autonomy, fairness, transparency, and data ethics have been framed as pedagogical concerns that directly affect learning processes and outcomes. By integrating ethical reflexivity into community-based practice, higher education institutions can ensure that AI contributes to the development of reflective professionals capable of ethical engagement in digitally mediated environments.

Taken together, these arguments establish the conceptual foundation for examining how quality culture, assessment practices, and pedagogical impact can be rethought in the context of AI-enhanced community-based learning. The following section builds on this foundation by exploring how educational quality can be sustained and evaluated without reducing learning to instrumental metrics, while preserving the formative aims of higher education pedagogy.

5. QUALITY CULTURE, ASSESSMENT, AND PEDAGOGICAL IMPACT IN AI-ENHANCED COMMUNITY-BASED PRACTICE

Quality in higher education is increasingly understood not as a static set of standards or compliance mechanisms, but as a dynamic and participatory process embedded in teaching, learning, and institutional practices.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

In the context of community-based practice, educational quality emerges from the coherence between pedagogical design, experiential learning processes, ethical responsibility, and meaningful assessment. The integration of artificial intelligence into practice-based education further accentuates the need to reconceptualize quality as a reflexive and human-centered endeavor rather than as a purely technical or managerial concern.

A quality culture in practice-based learning is grounded in the alignment of learning objectives, experiential activities, and assessment strategies. Community-based practice challenges traditional assessment models, as learning outcomes are often emergent, context-dependent, and difficult to capture through standardized instruments. Pedagogically, assessment must therefore prioritize formative approaches that support reflection, professional judgment, and continuous learning. This emphasis aligns with the formative aims of experiential education, where assessment functions as a tool for learning rather than merely as a mechanism for certification.

Within this framework, artificial intelligence can contribute to quality culture by supporting transparency, consistency, and responsiveness in assessment processes. AI-supported tools may assist educators in organizing evidence of learning, identifying patterns in student reflections, or monitoring engagement across diverse practice contexts. Learning analytics can provide insights into students' developmental trajectories, highlighting areas where additional support or pedagogical intervention may be required. When used judiciously, such tools can enhance the capacity of institutions to sustain quality across complex and heterogeneous learning environments.

However, the pedagogical impact of AI in assessment depends critically on how its outputs are interpreted and integrated into decision-making. AI-generated indicators must not be conflated with learning itself. Quantitative measures of activity, frequency, or textual features cannot substitute for qualitative judgments about understanding, ethical reasoning, or professional growth. A robust quality culture therefore requires that AI-supported data be contextualized through dialogue, reflective supervision, and disciplinary expertise. Human judgment remains central to interpreting evidence of learning and to ensuring that assessment practices reflect educational values rather than instrumental efficiency.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Community-based practice also foregrounds the relational dimension of quality. Feedback from academic supervisors, community mentors, and peers constitutes a vital source of learning and professional socialization. AI may support the coordination and documentation of feedback processes, but it cannot replace the relational and dialogical aspects that give feedback its formative power. From a pedagogical perspective, sustained relational support contributes not only to learning outcomes, but also to learners' capacity to manage stress, uncertainty, and emotional demands associated with practice-based contexts, reinforcing resilience as a dimension of educational quality (Andrioni et al., 2022). Research on relational coping and interdependence further suggests that adaptation and well-being are shaped through reciprocal processes within relational contexts, highlighting the pedagogical importance of supportive dyadic and institutional relationships in sustaining quality outcomes (Ştefănuț et al., 2023).

Pedagogical impact extends beyond individual learning outcomes to encompass institutional learning and curriculum development. Evidence generated through practice-based education—such as reflective analyses, feedback from community partners, and patterns of student engagement—can inform curriculum revision and pedagogical innovation. AI-supported systems may facilitate the aggregation and analysis of such evidence, contributing to institutional reflexivity and continuous improvement. In this sense, quality culture operates at multiple levels: individual, programmatic, and institutional. From a pedagogical perspective, practice-based learning also contributes to institutional and community-level understanding of social processes, reinforcing the reciprocal nature of university–community engagement (Croitoru, 2022).

At the same time, the pursuit of quality must remain attentive to ethical and social implications. Over-reliance on data-driven evaluation risks narrowing the educational focus to what can be easily measured, potentially marginalizing values such as empathy, civic responsibility, and ethical judgment that are central to community-based practice. A pedagogically grounded quality culture must therefore address issues of equity, inclusion, and social justice as integral dimensions of educational quality.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Research on students' perceptions of discrimination against minorities highlights the impact of institutional climates and educational practices on learners' sense of belonging and engagement, reinforcing the importance of inclusive and socially responsive pedagogical environments (Giurgiu et al., 2015). A pedagogically grounded quality culture resists this reduction by affirming that not all educational value is quantifiable. AI-supported assessment must therefore be guided by normative commitments to holistic education and social responsibility. A pedagogically grounded quality culture must remain sensitive to social vulnerability and contextual factors that shape learners' experiences beyond formal educational settings. Research addressing adolescent motherhood highlights the complex interplay between social context, institutional support, and individual trajectories, underscoring the importance of holistic and socially responsive approaches to education and professional formation (Mihalcea et al., 2019).

Ultimately, the pedagogical impact of AI-enhanced community-based practice should be evaluated in terms of its contribution to meaningful learning, professional formation, and institutional responsibility. Quality culture is sustained not through technological sophistication alone, but through reflective pedagogical practices that integrate experience, ethics, and critical inquiry. When embedded within such a culture, artificial intelligence can support educational quality without redefining its purpose.

This understanding of quality and assessment provides the basis for the concluding discussion, which synthesizes the chapter's arguments and outlines implications for higher education pedagogy in an increasingly digital and socially complex world.

CONCLUSION

This chapter has advanced a pedagogical analysis of community-based practice in higher education, situating it within contemporary debates on experiential learning, reflexivity, and the ethical integration of artificial intelligence. By bringing these dimensions together, the chapter has sought to move beyond fragmented or instrumental approaches to practice-based education and to propose a coherent framework in which learning, technology, and social responsibility are mutually reinforcing.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

At a conceptual level, the chapter has reaffirmed the centrality of experiential and reflexive learning as foundations of higher education pedagogy. Community-based practice has been shown to provide a unique educational space in which theoretical knowledge is confronted with real-world complexity, uncertainty, and ethical tension. Within this space, learning does not occur automatically through exposure to practice, but through structured pedagogical mediation that enables students to interpret experience, question assumptions, and integrate academic knowledge with professional judgment. This understanding challenges reductive views of practice as skills training or employability enhancement, positioning it instead as a core site of knowledge production and professional formation.

The analysis has further demonstrated that community-based practice should be understood as an intentional pedagogical design rather than as a logistical or administrative arrangement. When embedded coherently within curricula, practice aligns learning objectives, experiential activities, and assessment strategies in ways that support deep learning and ethical awareness. Such design foregrounds relational learning, emphasizing dialogue, mentorship, and reciprocity between universities, students, and community partners. These relational dimensions are not ancillary but constitutive of educational quality, particularly in disciplines oriented toward social engagement and public responsibility.

Within this pedagogical framework, artificial intelligence has been conceptualized as a mediating and supportive element, rather than as a determining force. The chapter has argued against both technological determinism and technological rejection, proposing instead a critical and reflective integration of AI into practice-based education. AI has been shown to offer meaningful pedagogical opportunities, particularly in relation to personalized learning, formative feedback, documentation of experience, and learning analytics. When aligned with pedagogical objectives, AI can enhance students' capacity for self-regulation, metacognition, and reflective engagement. At the same time, the chapter has identified significant pedagogical and ethical risks associated with AI-enhanced learning environments.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

These include the reduction of learning to measurable indicators, the standardization of reflective processes, the potential erosion of pedagogical relationships, and the risk of dependency on algorithmic guidance. By articulating these risks, the analysis has underscored that AI cannot be pedagogically neutral. Its educational impact is shaped by the values, assumptions, and power relations embedded in its design and use. Responsible integration therefore requires explicit pedagogical safeguards and clear conditions that preserve the primacy of human judgment, ethical reasoning, and institutional accountability.

The ethical discussion has reinforced the idea that pedagogy and ethics are inseparable in practice-based education. Issues of autonomy, fairness, transparency, and data governance have been framed not merely as compliance requirements, but as formative dimensions of learning itself. Community-based practice, particularly when supported by AI, offers a powerful context for cultivating ethical reflexivity, enabling students to critically examine how technological systems shape professional practices, social relations, and public values. In this sense, ethical engagement with AI becomes both a condition and an outcome of high-quality pedagogy.

From a quality perspective, the chapter has advanced a conception of educational quality as a dynamic and participatory culture rather than as a set of fixed indicators or performance metrics. In practice-based learning, quality emerges through coherence, reflexivity, and relational engagement, supported but not defined by technological tools. While AI can contribute to transparency, consistency, and institutional learning, it cannot replace the qualitative judgments and dialogical processes that underpin meaningful assessment. A robust quality culture therefore resists the temptation to equate data with learning and affirms the normative dimensions of education.

Several pedagogical implications follow from this analysis. First, higher education institutions should recognize community-based practice as a central pedagogical strategy and invest in its design, supervision, and evaluation accordingly. Second, the integration of artificial intelligence into practice-based learning should be guided by explicit pedagogical and ethical principles, articulated at both curricular and institutional levels.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Third, educators require sustained professional development and institutional support to navigate the pedagogical and ethical complexities of AI-enhanced learning environments. Fourth, curricula should explicitly address the social and ethical implications of AI, fostering digital, ethical, and civic literacy as integral components of professional competence.

Beyond these immediate implications, the chapter also points toward broader directions for future research and pedagogical innovation. Further empirical studies are needed to examine how AI-supported tools shape reflective learning processes across diverse disciplinary and cultural contexts. Comparative research could explore how different institutional models of community-based practice mediate the pedagogical impact of AI. Finally, interdisciplinary dialogue between pedagogy, ethics, and technology studies is essential for developing educational frameworks that remain responsive to social change without sacrificing the human-centered aims of higher education.

In conclusion, community-based practice and artificial intelligence can together contribute to the renewal of higher education pedagogy when integrated within a reflexive, ethically grounded, and human-centered framework. Such integration does not redefine the purpose of education, but reaffirms its core mission: the formation of reflective professionals capable of critical judgment, ethical action, and meaningful engagement with complex social realities in an increasingly digital world.

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

REFERENCES

Andrioni, F., Coman, C., Ghiță, R.-C., Bularca, M. C., Motoi, G., & Fulger, I.-V. (2022). Anxiety, stress, and resilience strategies in parents of children with typical and late psychosocial development: Comparative analysis. *International Journal of Environmental Research and Public Health*, 19(4), 2161. <https://doi.org/10.3390/ijerph19042161>

Billett, S. (2014). Integrating practice-based experiences into higher education. Springer.

Croitoru, A. (2022). Migrăție, navetism și antreprenoriat în mediul rural românesc: Argumente pentru o analiză integratoare. In A. Croitoru & A. Iorga (Eds.), *Dezvoltare comunitară în România: Concepțe, procese, modele de analiză* (pp. 303–326). Tritonic.

Eraut, M. (2004). Informal learning in the workplace. *Studies in Continuing Education*, 26(2), 247–273.

Giurgiu, R.-L., Marica, M. A., & Ionescu, A. F. (2015). Students' perception of discrimination against minorities. *Procedia – Social and Behavioral Sciences*, 180, 338–344. <https://doi.org/10.1016/j.sbspro.2015.02.126>

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign.

Illeris, K. (2018). Contemporary theories of learning: Learning theorists... in their own words. Routledge.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Prentice Hall.

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson.

Mihalcea, E. M., Popp, L. E., & Roman, C. M. (2019). Perspectives of maternity at adolescent age. *Journal of Family and Social Welfare*, 12(1), 45–58.

OECD. (2023). Artificial intelligence in education: Challenges and opportunities. OECD Publishing.

Ryan, M. (2013). The pedagogical balancing act: Teaching reflection in higher education. *Teaching in Higher Education*, 18(2), 144–155.

*INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE*

Schön, D. A. (1983). *The reflective practitioner: How professionals think in action*. Basic Books.

Shulman, L. S. (2005). Signature pedagogies in the professions. *Daedalus*, 134(3), 52–59.

Ştefănuț, A. M., Vintilă, M., Bădău, L. M., Grujic, D., Oprean, C. M., Goian, C., & Sârbescu, P. (2023). Perception of disease, dyadic coping, and the quality of life of oncology patients in the active treatment phase and their life partners: An approach based on the actor–partner interdependence model. *Frontiers in Psychology*, 14, 1069767. <https://doi.org/10.3389/fpsyg.2023.1069767>

UNESCO. (2022). *Reimagining our futures together: A new social contract for education*. UNESCO Publishing.

Wenger, E. (1998). *Communities of practice: Learning, meaning, and identity*. Cambridge University Press.

Williamson, B., Eynon, R., & Potter, J. (2020). Pandemic politics, pedagogies and practices: Digital technologies and education. *Learning, Media and Technology*, 45(2), 107–114.

CHAPTER 2
REIMAGINING PEDAGOGY IN THE AGE OF
GENERATIVE AI: FROM TEACHER-CENTRED TO
INTELLIGENCE-AUGMENTED LEARNING

¹Moses Adeolu AGOI

²Ismail Olaniyi MURAINA

³Solomon Onen ABAM

⁴Bashir Oyeniran AYINDE

⁵Wasiu Olatunde OLADAPO

¹Lagos State University of Education, Lagos Nigeria, agoi4moses@gmail.com, ORCID ID: 0000-0002-8910-2876

²Lagos State University of Education, Lagos Nigeria, niyi2all@yahoo.com, ORCID ID: 0000-0002-9633-6080

³Federal College of Education Technical, Isu, Ebonyi State Nigeria, vmaxsollution@gmail.com, ORCID ID: 0000-0003-3084-8918

⁴LASU, African Centre of Excellence for Innovation and Transformative, Stem Education, Lagos Nigeria, Ayindebash195@gmail.com, ORCID ID: 0000-0009-5735-1040

⁵Lagos State University of Education, Lagos Nigeria, Wasiuoladapo19@gmail.com, ORCID ID: 0000-0002-7604-0952

INTRODUCTION

The global environment of knowledge distribution is experiencing a radical and rapid technological shift, with artificial intelligence (AI), information-based infrastructures, and machine governance. As with other participants in the international political economy, who use predictive systems based on AI to manage financial volatility, geopolitical risk, climate-related disruptions, and public health crises, educational institutions are also moving towards implementing generative AI (GenAI) and machine-assisted learning technologies to remake old-fashioned pedagogical patterns. This convergence is a structural transformation of inflexible, teacher-directed teaching patterns to fluid, intelligence-enhancing learning patterns that are responsive, personalized and foreseeable. Historically, education systems have been very dependent on the standardized curriculum, linear progression model, and summative assessment systems which do not always embrace the diversity of learner experiences and paths. By comparison, AI-based pedagogic systems provide novel abilities of ongoing diagnosis and intervention. AI tools may analyse learning-generated data in large quantities such as written answers, comments or posts on discussion forums, behavioural data, and records of interactions to identify minor signs of cognitive distress, loss of motivation, or anhedonia through learning analytics, natural language processing (NLP), computer vision, and machine learning procedures. Such micro-level cues are often not perceivable by human teachers, especially where mass higher education occurs, or digitally mediated learning classes are in place and where the teacher must allocate their attention. These capabilities are further extended by the recent advancements in neural network architectures, as well as by multimodal artificial intelligence systems. With the combination of textual, audio, visual, and contextual data streams, AI platforms are able to build dynamic learners profiles, which change over time and learning settings. Application of geospatial analytics and temporal modelling will enable the prediction of academic trajectories with spatiotemporal precision not seen before to enable institutions to foresee risks of performance, customize instructional material and execute specific support mechanisms before learning failures take root.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Such systems theoretically have the potential to make education more equitable, delivering both early-warning mechanisms and scaffolding that is more customized, especially to the learners who could otherwise become institutionalized due to the lack of such mechanisms. Simultaneously, AI introduction in pedagogy cannot be reduced only to a technical development but is primarily integrated into the world-political-economic systems, determining access, control, and governance. The AI ecosystem has a very high level of concentration, with the major infrastructures cloud computing platforms, foundation models, data repositories, proprietary algorithms being in the control of a small number of technologically advanced states and multinational technology companies. Such a concentration reflects more general lop-sides of the international political economy and of dependency, sovereignty, and power within the educational domain. To institutions in the Global South and under-resourced education systems, the use of externally created AI tools can create new types of techno-dependency. Although AI-based platforms are typically sold on the promise of scalability and affordability of implementation, their implementation can restrict the autonomy of the local in curriculum development, data control, and pedagogical focus.

The educational information learner produces can be mined, commoditized, and re-used in the global AI value chains, further supporting the unequal distribution of value seizure and epistemic power. Here, AI is likely to be not only an educational tool, but also a system in which the disparities in knowledge production and technological capability related to the world are recreated due to global inequalities. The use of AI in the education setting is also complicated by ethical issues. One of the most notable attributes of most sophisticated AI systems, in particular deep learning models, is their opacity. Algorithms introduced in decision-making seem to be black box, which makes it hard to learners, administrators and educators to understand how they make predictions or recommendations. This lack of transparency, when it comes to making high-stakes decisions, e.g. student assessment, academic progression, admissions, or disciplinary action, creates significant concerns regarding accountability and procedural justice when AI systems are involved. Prejudice is another problematic issue.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

The historical data used by AI systems are usually based on past data and these data usually mirror the prevailing social, cultural, and linguistic status quo. Because of this, predictive models can be detrimental to students with a marginalized background, non-dominant language, or other learning cultures. These biases may have negative consequences in global aspects of education, where Western epistemology and data standards often prevail, which leads to a detriment of culturally responsive pedagogy and contributes to exclusion. Besides, the enhanced use of automated tracking and predictive analytics brings up questions of surveillance, privacy and the psychological effect of constant datafication on both learners and educators. Such ethical risks highlight the necessity to go beyond the approach of technologist solutionism that discusses AI as a technologically neutral or universally positive technological innovation. Rather, AI in pedagogy needs to be perceived as a socio-technical system that is guided by design decisions, institutional pressures, regulation, and power dynamics. Choices regarding what data is gathered and what results are maximized and what values are represented in algorithm models are inherently political choices that have long-term consequences of equity in educational systems and democracies.

The two-sidedness of AI in pedagogy is thus investigated in this chapter, which places AI as a driver of pedagogical change on the one hand, and a cause of considerable ethical and political-economic risk on the other hand. The positive side of AI-driven systems is a chance to redefine the teaching and learning process due to personalization, early interventions, and evidence-based decision-making. Conversely, in the absence of strong governance, transparency regimes, and context-sensitivity, the same systems would contribute to strengthening global inequalities, institutional autonomy, and lack of trust in the educational processes. Having placed AI-enabled pedagogy in the wider context of international political economy, this chapter suggests the critical perspective towards the assessment of both the transformative possibilities and the structural limits of this paradigm. It contends upon the ethical, locally responsive, and social responsible AI pedagogies that put human agency, inclusivity and epistemic diversity at the forefront.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

After all, the issue is not whether AI needs to be implemented into education or not but how it could be regulated and created to become an instrument of just production of knowledge as opposed to a source of novel types of educational dependency and algorithms.

1. THEORETICAL FRAMING: IPE, TECHNOLOGY, AND EDUCATIONAL POWER

Regarding International Political Economy (IPE), the adoption of artificial intelligence (AI) in education systems cannot be perceived as simply a collection of technical solutions but as an economic technology and a policy framework actively transforming power dynamics between educational organizations, multinational technology corporations, and the state and local environment. The integration of AI in education, in this perspective, is entrenched in the politics-economics of the world, where the power and authority to manage key digital infrastructures, to define who has access to and who uses that infrastructure, and whether it ultimately supports or serves the interests of educational change. The key part of this reorganization is the centralization of AI value chains, which include data generation, cloud computing platform, algorithmic models that are proprietary as well as the data and service monetization platforms. These value chains are highly dominated by a relatively small group of very powerful states, the United States and China in particular, as well as a few giant technology companies that run the research of AI, the cloud computing business, and the development of large language models.

The unevenness in computing infrastructure and AI knowledge underscores gross inequalities: AI compute resources at high-performance are still highly geographically concentrated, further enhancing technological monopoly where advanced economies have disproportionate control over the global AI capability, the global standard setting, and the global direction of innovation. Such a focus is evident in the global politics and governmental policies of the world powers where education technology is being framed as a question of national security, economic competitiveness, and digital sovereignty, which is the capacity of a polity to have control over its digital landscape, information flows, and epistemologies (Hamadeh and Amin, 2025).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

This framing not only raises AI in education to a pedagogical boost but also to a strategic power that not only forms the capacity of the workforce but also the capacity to influence nationally in the new global knowledge order. The domination of the tech giants, i.e. Amazon Web Services, Microsoft Azure, and Google Cloud, over the cloud infrastructures and AI platforms not only concentrates power in the platforms, but also dictates the terms of the digitalization of education per se. These cloud providers have now become critical service providers of AI-enabled educational services, which dictate what systems can be used, how they are revised, and on what terms educational data is stored and processed. This organizational concentration of infrastructure and service delivery has made platform companies accrue market power that influences curriculum provision, norms of data governance and interoperability standards across a variety of educational settings (Luitse, 2024). Similar to the case of AI in education, platform-based models are now linked to new business logics based on constant data mining and monetisation, and prioritise corporate streams of revenue, as opposed to pedagogically based design and local agency (Nichols and Garcia, 2022).

The concentration of a select few actors and states in the world is a heavy burden on digital sovereignty and techno-dependency especially in areas with low regulatory capacity and limited technical infrastructures, including most countries within the Global South. These areas will become reliant on AI technologies with imported values, priorities, and epistemologies without strong legal frameworks to guide their research ecosystems, adequate investment in local compute resources. This reliance weakens local agency in educational development by determining educational curricula, priorities and learning analytics using systems that are largely designed to operate in situations vastly different than those in which they are implemented. In most African and Southeast Asian contexts, such as, but not necessarily limited to, AI educational technologies designed in western contexts face the danger of erasing culturally specific pedagogies and indigenous knowledge systems, displacing local educational values and even strengthening epistemic marginalization (Maisiri & Musonza, 2025).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Such dependency is noted to not only constrain the strategic policy space of educational actors in the Global South, but it also recreates patterns that are similar to previous aspects of technological imperialism in that the local institution becomes a passive consumer instead of an active innovator in the development of educational technologies (Mgbomo & Nkaanee, 2025). Furthermore, geopolitical rivalry surrounding AI reaches to the national policy frameworks that explicitly use education as the location of establishing digital sovereignty. The examples of China and the United States include AI education as part of the overall national policy to achieve technological dominance and workforce competitiveness, which is indicative of how the educational policy has become a strategic tool in the international tech wars (Hamadeh & Amin, 2025). These policies highlight the dual quality of education as the tool of creating domestic competence in AI and as the way of inculcating national values into the new technological ecosystems. Not every polity can however equally determine the direction of AI educational tools or frameworks as there exist underlying power asymmetries in AI infrastructure and governance. As a result, the policy interventions of states that are technologically ahead may unintentionally define global norms at the expense of states that lack such power and ability to influence the global norms. In addition to these geopolitical aspects, there are ethical and sociotechnical issues regarding the notion of algorithmic governance, transparency, and fairness in the process of AI education.

The lack of transparency in most AI models regarding the way decisions concerning student performance, personalization of content materials and automated feedback are reached casts doubt on the accountability and equity in educational governance. In cases when access to opportunities, evaluation, or monitoring is affected by algorithmic predictions, these systems have the potential to reproduce social biases and strengthen social inequalities unless they are created with regard to situational sensitivity and involvement of multiple parties. Studies indicate that the implementation of AI is more likely to focus on the technical aspects of efficiency rather than devising profound pedagogical issues, and it is crucial to incorporate a system that guarantees fairness, transparency, and sensitivity to the needs of local education (Zhai et al., 2024).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Overall, the IPE viewpoint pinpoints AI in education as a multi-dimensional phenomenon that integrates technological innovation and institutional regulation, competition at the geopolitical level, and normative conflicts of control and meaning. Not only does it have an economic incentive and market logic on its path, but the strategies of states, cultural values, and global power asymmetries that decide who benefits in the integration of AI into educational systems shape its trajectory. To understand the transformative potential of AI in education therefore necessitates a critical approach to these larger systems of power, making investments in the local capacity building, and governance structures that are both global and concerned with a defence of digital sovereignty as well as fair participation.

2. AI FOR PEDAGOGICAL ANTICIPATION (EARLY-WARNING)

The modern AI-driven applications have the potential to greatly expand the scale and speed of proactive activities in educational environments to provide an opportunity of early discovery of learning threat, behavioural changes, and nuanced patterns of engagement that are not easily revealed through the conventional approach. These systems combine various analytical software, including natural language processing (NLP) to identify discourse patterns, sentiment and concept misconceptions in student communications in addition to other types of data such as geospatial or temporal analytics to put such student interactions in the context of wider socioeconomic factors affecting attendance, mobility, and engagement. Indicatively, AI algorithms can process written responses to pedagogical cues, detecting not only the mastery of the content but also the affective indicators, which may signal confusion, frustration, or lack of engagement and therefore allow the more timely and personalized intervention of the pedagogue. Such multimodal systems are an indication of a data convergence that is much richer than mere test scores thus enabling educators to view patterns that extend across both academic performance and external contextual influences. The success of these anticipatory models is however quite dependent on the quality, representativeness and cultural relevance of the data on which they are trained.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Most predictive models used in education settings need huge, high-quality data, and educational data are often small, abnormal, or insurmountable, making it difficult to precisely predict and prejudge the effects. In cases where the data is not complete or biased to specific language, education system or even social cultural setting the AI systems can pose the risk of creating systematic blind spots and misclassifications- e.g. AI relying on English language cues or uniform behavioural predictors may be ineffective in multilingual and diverse classrooms, compromising predictive validity and justice. It has been demonstrated that lack of standardized data collection across institutions and regions brings about variability that may lead to distortion of model outputs and constrain their generalizability to other situations (Trujillo et al., 2025). This issue is also complicated by the fact that most AI models are a black box, and educators and administrators cannot easily understand the decision-making processes, as well as whether the patterns that are being identified are indicative of actual pedagogical requirements or artifacts of biased data sets. Contextualization limits are also dangerous in addition to linguistic and data quality issues.

Unless attentively tuned to revolve around local political, institutional, and social processes, AI-generated outputs tend to be over fitted to superficial or spurious relationships resulting in predictive patterns that are statistically significant but theoretically or contextually empty. To illustrate, an AI model can discover a correlation between attendance drops and a specific set of behavioural indicators in one learning institution, but, when those behavioural indicators are altered by local socioeconomic shocks, e.g. work migration during a season, or transport difficulties, the advice offered by the model can be inaccurate or even inapplicable in other contexts. These misalignments of algorithms show how dangerous it is that AI models can assume that structural inequalities are identical to individual academic risk, and that these inequalities will be solidified instead of being reduced. Stereotypes can inadvertently be supported and subgroups can be marginalized, or interventions that are not necessarily consistent with local community values and education can be proposed by predictive models that do not consider the local diversity of student experience.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

The corresponding literature on ethics and technicality also highlights the fact that AI systems that are not conceptualized with enough contextual sensitivity can have error distributions that are skewed based on student demographics, type of institution, or geographic location, and contribute to inequitable outcomes in different student groups (Frontiersin.org, 2025). Moreover, the absence of the transparent nature of how models come to their predictions may undermine trust and prevent its implementation by the educator who is not trained to interpret the outputs of the algorithms and see AI-based suggestions as arbitrary or ungrounded. To address these issues, scholars suggest adopting hybrid models of humans and AI that integrate the results of algorithms with the expertise of a human, and in such a situation, AI can be viewed as an addition rather than a replacement of professional pedagogical knowledge (Smart Learning Environments, 2024).

The method recognizes that human teachers possess the needed contextual knowledge, cultural competence, and moral judgement that pure algorithmic systems do not, especially in situations that involve the subtle aspects of the learning process, such as motivation, identity and socioemotional development. Overall, although the modern AI-driven systems have a transformative potential, as they widen the scope and speed up the pace of the anticipatory educational practices, to bring such potential to the reality, one should pay close attention to the quality of data, cultural diversity, contextual relevance, and ethical design. Systems need to be trained with a wide variety of representative data, continuously audited with a fair and bias like process, and incorporated into educational ecosystems with open governance systems that observe local priorities. It is only with this responsible application that AI can assist teachers to make responsible and fair decisions that do not only do not contribute to the current inequities in education but also do not create false forecasts.

3. AI IN MEDIATION AND CLASSROOM ENGAGEMENT: TOOLS AND EVIDENCE

3.1 Knowledge Management and Issue Extraction

Use of machine learning (ML) to aid in the complex, multi-party interaction management in the educational setting has been more common with the advent of educators and researchers embracing the idea of using data-driven insights to supplement human cognition into classroom interactions. Fundamentally, ML allows automated analysis of transcripts, in which advanced algorithms are used to process extensive classroom data (including transcripts of discussions, group discussions, and posts on forums) and structure and synthesize such contributions to identify patterns of meaningful interaction.

Through natural language processing (NLP) and pattern recognition, these systems are able to notice subtle changes in the student positions over time, track the topics that gain or lose momentum in a discussion and trace the course of consensus or divergence that would otherwise be lost in the number and complexity of interactions. This depth of analysis enables instructors to detect, e.g. recurring misconceptions among peer interactions, or moments when students as a group become more attracted to problem solving solutions, and so provides a deeper understanding of collaborative learning processes than is usually possible with a conventional observation or manual coding tool (International Journal of Educational Research, 2024). These analysis features are highly beneficial in supporting decisions of the educator by pointing out where there might have been a point of agreement or areas of persistent disagreement in a conversation that would otherwise be overlooked in a dense or a fast-paced conversation. Instead of serving as substitutes to human judgment, ML-enabled systems serve to amplify human insight, unveiling latent patterns to inform pedagogical strategy and classroom facilitation. As an example, such thematic relevance and discourse pathway clustering of transcripts allow educators to intervene earlier in student misunderstanding, to modulate the teaching pace, and to target remediation that fits the conceptual issues actually misconceived by students. This is in line with larger studies that have found AI-enhanced systems may be useful in assisting teachers in determining not only what students know.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

They can also help educators understand how students use language to co-construct meaning, which is a vital aspect of collaborative and dialogic learning. An outstanding example of the contribution of ML systems to classroom analytics is the reduction of cognitive load, in particular, in high-interactional-density environments. Manual coding or qualitative annotation are considered to be traditional ways of discourse analysis because it takes long and considerable amounts of time and cognitive effort, usually taking the focus off core teaching tasks by instructors. The ML systems can be used to automate these analytical procedures through identifying the salient themes, measuring patterns of interaction, and creating visual summaries that reduce the complex information to interpretable insights. This enables teachers to concentrate more on the higher-order pedagogical issues, like being able to identify the cultural background of the student responses, reading relational dynamic in the group work and promoting the socio-cognitive development. As an illustration, ML-based dashboards can identify students who find it difficult to express their ideas or those who are not represented in discussions enough, and their educators can accommodate the facilitation strategies to promote equity and inclusion, particularly in the diverse or multilingual setting where patterns of communication can differ significantly. In addition to transcript analysis, the analysis of multimodal data (video, audio, sensor, etc.) combined with ML allows extending the possibilities of a thorough analysis of classroom interaction.

The new research into the automated identification of instructional activity and discourse in multimodal classroom data supports the idea that ML can process the non-verbal and verbal cues presented in classroom environments and provide a comprehensive picture of engagement, which incorporates gesture, gaze, and speech patterns (Bueno et al., 2025). These systems demonstrate potentials in scalable teacher feedback systems that can provide educators with real-time feedbacks on the student engagement, teacher talk gestures and interactions rhythms that influence the learning outcomes. Nevertheless, there are no challenges when it comes to the successful implementation of ML in the analysis of educational discourse.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Foregrounding of ethical and methodological considerations is a must in order to make sure that the ML systems are supportive of pedagogical objectives without infringing on learner autonomy or privacy. As an illustration, to perform and automate the analysis of classroom interactions, attentive care of student data is necessary, and the transparent working of patterns generated and interpreted by models and explaining to learners how their input is being used should be communicated. In other works, the issue of algorithmic interpretation and agency has been associated with trust in the classroom and a perceived role of human educators in a technology-mediated classroom, emphasizing the need to keep a human-in-the-loop system that puts the human educator at the heart of decision-making. Moreover, the quality and representativeness of the data that is used in training ML model depend on the reliability of the models.

The information on the discourse in a single educational setting can reflect certain norms of interaction in linguistic or cultural aspects that cannot be transferred into another environment with ease, thus misinterpreting the intentions of the students or their patterns of engagement. This is why researchers consider the importance of context-specific model training and validation strategies that should take into account the variety of voices and styles of communication of learners. In absence of such calibration, ML outputs have the danger of strengthening established biases or exclusion of non-dominant communicative practices hence compromising equitable teaching and learning. Nevertheless, the opportunities of ML-assisted engagement analysis remain perpetually growing with more adaptive and inclusive models. As an example, predictive analytics incorporating transcript attributes with behavioural cues can be used to identify real-time disengagement or confusion and provide pedagogical help on time.

Moreover, with the further evolution of ML systems, there is also a growing concern regarding the creation of explainable AI models that can give a set of interpretable reasons about their classifications and predictions, which will enhance the confidence of educators in such tools and lead to a more successful use in the planning of instruction. To sum up, machine learning and its application in interpreting more complex educational activity is, by example, an effective combination of technology and pedagogy.

TL systems can radically transform learning interactions between educators and other multi-party groups by automating transcript processing, improving decision-support, and decreasing cognitive load requirements by educators. To get the full benefits of all these, though, it must be implemented in concert with careful pedagogical planning, ethics, and continuous critical assessment that focuses human knowledge and learner diversity.

3.2 Digital Engagement and Virtual Spaces

Online platforms and safe communication technologies are becoming increasingly more useful in facilitating more inclusiveness in complex educational and participatory practices because they increase accessibility and facilitate a wide variety of modalities of engagement and the variety of stakeholders who can meaningfully engage. By permitting teachers and organizations to use encrypted messaging services and joint online platforms, they can help to instil strategic communication that includes voices that might otherwise be xenophobic or out of place in the typical academic settings, such as learners living in remote or rural settings, socioeconomically deprived groups, individuals with disabilities, as well as the communities of the diaspora, and, therefore, promote the ideals of digital inclusion and equal participation (UN Department of Economic and Social Affairs, 2025). Safe spaces are also used to engage in confidential discussions and share of knowledge among partners in multi-stakeholder efforts to break down the obstacles caused by a fear of being punished or exposed and thus hesitate to openly engage in sensitive dialogue. Simultaneously, analytical or mapping products, including geospatial information system (GIS) mapping or social media analytics enhance the ability to perform social monitoring to detect the change in community mood, tensions, or localized hotspots of conflict that can impact learning conditions or have a negative effect on the well-being of students. To illustrate, educator and student perception studies on the effect of digital platforms in various countries have shown the potential of increasing engagement and exposing inequality in access which affect pedagogical results, and GIS and analytics may be used to help institutions adjust interventions to local socio-cultural backgrounds (O'Connor et al., 2023).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Such instruments may prove to be especially useful in crisis-impacted areas or in times of social unrest, when immediate understanding of the overall mood and communication patterns can be utilized to make specific supports and psychosocial interventions. In addition to emotional appeal and topography, digital platforms provide more than ever before to the possibility of networked learning and international collaboration, allowing learners to connect internationally and internationally cross-culturally. The studies show that this connectivity may enhance the learning processes, stimulate motivation, and develop cross-cultural competencies when an educator carefully mediates it by focusing on critical reflection and intercultural conversation (Ramírez-Correa et al., 2025).

Nevertheless, although the prospects of inclusivity and empowerment are high, there are also large risks connected to these digital spaces that may affect the trust, distort engagement, and subject the vulnerable users to harm. One of the biggest issues is the growth of misinformation and disinformation that can be easily distributed among platforms due to the amplification of algorithms and the network effect and destroy the ability of the learner to differentiate credible sources and undermine trust in digital communications (Kim and Dennis, 2025). It has been found that even in educational institutions, misinformation has the capacity to propagate, distracting a learner, increasing false accounts and that cynicism or disengagement may prevail unless there is active intervention in the form of media literacy and critical pedagogies. The threat of privacy and data security also makes the inclusivity promise even harder. The content of online platforms can be gathered in large volumes, and unless there are well-designed governance systems, they can be either subject to unauthorized surveillance, profiling, or exploitation, and these have chilling effects that discourage users, particularly those who do not trust institutional protections or the law (Journal of Computers in Education, 2022).

The privacy issues in the education sector are shaped by the power and control concerns: students and families are worried about the impact of corporations on learning settings and commercializing student data, and educators have to strike the balance between the advantages of platform utilization in teaching and the professional duty to safeguard student privacy (Bali et al., 2023).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Phishing, spoofing, and ransomware hacks are other examples of cybersecurity threats that indicate that even in a pedagogical context, digital connectivity may cause instability that spills over to associated aspects of institutional stability and personal security (Discover Computing, 2025). Such risks are particularly acute among the younger generation and other less digitally literate or aware of such online ills, which is why detailed digital safety education is a key element of inclusive digital engagement strategies. Besides, the distribution of digital access is not balanced, which is a symptom of larger digital divides that may hinder equal access online educational and civic environments. The disparities in broadband access, the devices, and digital literacy imply that not all learners will effectively engage this, despite the existence of decent platforms, and therefore serves to deepen the socio-economic fissures that already exist (ITU, 2022).

The concept of digital literacy itself significantly mediates the inclusive presence: the studies indicate that more competent learners in navigating digital space have more resources to manage the risks, assess information quality and engage in critical interaction with digital content and less competent learners are vulnerable to misinformation, cyber threats and exclusionary experiences (Katapally, 2024). Therefore, the idea of inclusiveness in digital education is not just a matter of access to technology but also trust, agency, safety, and skill which needs to be invested in in the long run to ensure privacy and safeguard against abuse in digital literacy programs, ethical design principles, and governance frameworks.

Overall, although online and secure communication technologies have the potential to provide effective channels of inclusive interaction, their potential is always contingent on their ability to manage structural inequities, reinforce digital governance, and incorporate in the design and utilization of these technologies security, ethics, and learner empowerment. Devoid of these protective measures, the very technologies used to create new opportunities to engage into the process can also be used to recreate exclusion, undermine trust, and subject vulnerable participants to harm, which is why more comprehensive solutions that would combine technological innovation with ethical, educative, and policy-based reactions are urgently needed.

**4. POLITICAL ECONOMIC IMPLICATIONS:
ACCOUNTABILITY AND MISUSE**

4.1 The Black-Box Challenge

Accountability is seriously compromised when there is increasing dependence on so-called “black-box” AI models, especially deep learning systems whose internal reasoning processes are not only opaque but also difficult to interpret even by their designers. In educational contexts, where AI systems are increasingly applied for learning analytics, early-warning systems, automated assessment, and behavioural risk detection, this opacity raises very serious governance and ethical concerns. When an AI system incorrectly indicates that a student is unstable, disengaged, or at academic risk, it is usually not clear whether the mistake results from biased or incomplete training data, bad feature selection, an inappropriate model architecture or some contextual misapplication of algorithmic outputs. Burrell (2016) argues that opacity in machine learning results from both technical complexity and institutional choices that constrain transparency; hence making accountability structurally difficult rather than being just a technical issue. This attribution problem has its most severe manifestations in education because very often high-stakes decisions are based on AI-driven outputs: student tracking, grading, access to support services disciplinary interventions or even exclusion from pathways. When mistakes happen the blame gets shared among many players, including software vendors; data providers; institutional administrators; educators, creating what scholars have termed an “accountability gap” (Matthias 2004).

In reality this gap makes it hard to put things right after a mistake: students and parents often do not have much power to challenge the decision; teachers usually cannot see how the recommendation was made; institutions cannot easily check systems they do not fully control. Studies about algorithmic decision-making show that such uncertainty mainly impacts already marginalized learners who are more likely to be wrongly classified due to historical biases ingrained in educational data (Selbst et al., 2019). The influence of biased data exacerbates accountability challenges. Educational AI systems are typically trained on historical datasets that mirror existing inequalities around language, socioeconomic status, disability, race, or location.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

When these biases become part of the model, AI systems may consistently overestimate risks for certain groups of students or fail to recognize other ways of being engaged and learning. But because black-box models do not provide clear explanations for individual predictions, it is hard to know if a bad outcome is due to biased training data, proxy variables that unintentionally encode sensitive attributes, or spurious correlations learned by the model. Institutions may therefore unknowingly reproduce discriminatory practices without having the diagnostic tools to see and fix them (O’Neil 2016). Beyond technical accountability, institutional trust is at stake. Trust is a foundational requirement in educational environments: learners must believe that evaluation processes are fair; educators must trust decision-support tools; and institutions must maintain legitimacy in the eyes of the public. Opaque AI systems threaten this trust by creating perceptions of arbitrariness and technocratic overreach. Studies in educational technology governance show that when stakeholders cannot understand or challenge algorithmic decisions, they are more likely to view AI systems as unjust or illegitimate even when outcomes are statistically accurate (Baker & Hawn 2021).

This erosion of trust is especially dangerous in sensitive settings like student mental health, behavioural monitoring, or predictive risk assessment where misclassification can have serious consequences for personal safety and dignity as well as long-term educational trajectories. In response to these concerns, scholars and policymakers have increasingly turned toward explainable AI (XAI) approaches that seek to make algorithmic reasoning more interpretable to human users. Techniques such as LIME and SHAP seek post-hoc explanations by determining which features were most influential in any given prediction (Ribeiro et al., 2016). Though these tools are an important step forward, critics argue that explanation does not guarantee accountability. Explanations can be partial and misleading, or they may not be accessible to non-experts. Besides this, explanations do not answer the deeper question about whether an AI system should even be used at all in some educational contexts (Doshi-Velez & Kim, 2017). As a result, explainability needs to be supplemented with broader governance mechanisms such as human-in-the-loop decision models, regular bias audits, clear documentation of data provenance, and participatory oversight by educators and learners.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

From a governance perspective, new regulatory frameworks have increasingly recognized the dangers posed by opaque AI systems in high-stakes domains. For instance, the European Union's AI Act considers high-risk the AI systems used for education and training and requires them to meet increased transparency obligations as well as human oversight and accountability requirements. This type of framework may not yet be applied equally around the world but it is indicative of a trend that views algorithmic opacity as more of a governance failure than simply a technical limitation. It places on educational institutions the not only the responsibility to adopt innovative technologies but also to ensure that such technologies are ethically principled in terms of fairness, contestability and proportionality. In short, black-box AI model use in education fundamentally disputes traditional notions of accountability by obscuring causal pathways, diffusing responsibility and weakening institutional trust. These systems without robust interpretability, governance and redress mechanisms stand to undermine the very educational values they claim to support. Meeting this challenge means overcoming purely technical fixes toward integrated socio-technical approaches that explainable design regulatory oversight combined with sustained human judgment. Institutions can only embed accountability by ensuring technological innovation enhances rather than erodes fairness legitimacy trust in decision-making through the full lifecycle of educational AI systems.

4.2 Sovereignty and Data Governance

The growing use of digital traces in educational, social, and commercial contexts raises many complex legal and normative debates about consent, privacy, and data protection since data collection often takes place passively and without the explicit awareness of users. Modern digital platforms, apps, and analytics systems capture huge volumes of personal information via background processes – third-party tracking libraries, web beacons, interaction logs – without clear notice or meaningful opt-in mechanisms that can undermine core principles of informed consent as protected by robust data protection frameworks such as the European Union's General Data Protection Regulation (GDPR).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Consent under the GDPR must be freely given, specific, informed and unambiguous; individuals must be able to withdraw that consent as easily as they give it. If these standards are not met then processing would be unlawful with huge penalties attached for non-compliance (e.g., up to €20 million or 4% of global annual turnover). Most users do not know how much their data are collected or used or shared which in practice limits their ability to make informed choices about participation and weakens individual agency. These consent challenges become even more complicated in cross-border digital environments where data collected in one jurisdiction may be stored, processed, or transferred to another with entirely different privacy norms and legal protections. The growth of cloud computing and international data flows means that personal information regularly passes through more than one legal system resulting in both legal uncertainties concerning compliance with local privacy laws as well as problems with such compliance. For example, under many national data protection laws, such as Nigeria's Data Protection Act 2023, personal data can only be transferred internationally if the destination jurisdiction ensures an “adequate level” of protection or if certain conditions are met such as explicit consent from the data subject.

In countries with strong legal regimes like the GDPR, standard contractual clauses or binding corporate rules provide a strict mechanism for lawful cross-border transfers emphasizing accountability and safeguards that protect the rights of individuals even when data are transferred outside EU territoriality. However, even within such regimes, a fragmented global legal landscape presents substantial compliance challenges. The varying approaches to data protection in each jurisdiction, be it opt-in consent requirements, provisions for data localization, or different levels of adequacy, create conflicts and uncertainties for organizations involved in international data flows. As pointed out by legal analysts, regulatory fragmentation increases legal liability, complicates international litigation, and necessitates that entities develop compliance strategies tailored to multiple systems rather than being able to rely on one unified standard. In some areas where enforcement is sporadic or regulations are relatively new in the field of data protection, this increases the likelihood that privacy rights of data subjects will be violated if their information is moved to or used in countries with lower standards of protection.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

This leaves us with a scenario where the data subject may enjoy real rights under some particular legal regime, for instance, rights to access personal information about them correct it or delete it objecting against profiling, but these become almost impossible to enforce after crossing borders into jurisdictions offering different or less robust protections. Moreover, global differences regarding privacy protections can make people vulnerable to unauthorized surveillance and profiling as well as exploitation, especially when multinational platforms use personal information in ways that go beyond what users expect or know about. Such issues are part of human rights frameworks acknowledging privacy as a basic right and thus emphasize the importance of legal clarity and harmonization extending protection across borders so that the exercise of digital rights is not dependent on geography. Beyond legal compliance, ethical considerations about transparency, fairness, and autonomy play a central role in debates over digital trace collection. Passive data collection practices, where users are unaware of data harvesting and tracking, can erode trust in digital systems and create perceptions of exploitation, particularly when users cannot meaningfully opt out or fully understand how their information is used in automated decision-making processes.

This dynamic is especially concerning in contexts where vulnerable populations, such as students or marginalized communities, are disproportionately affected by data practices they neither control nor fully comprehend. Ensuring that individuals are adequately informed about data collection methods, storage practices, and potential risks is therefore essential not only for legal compliance but also for upholding ethical standards in digital engagement. In response to these challenges, policymakers, legal scholars, and data protection authorities emphasize the importance of robust digital governance frameworks that mandate transparency, accountability, and enforceable consent mechanisms. This includes embedding privacy-by-design principles into digital systems, employing privacy-enhancing technologies, and ensuring that individuals retain meaningful control over their personal data throughout its lifecycle. Only through such comprehensive approaches, grounded in both legal protections and ethical commitments, can the benefits of digital trace data be realized without compromising fundamental privacy rights in an increasingly interconnected digital world.

5. POLICY RECOMMENDATIONS: A MULTI-PRONGED FRAMEWORK

To support the responsible and ethical use of artificial intelligence in education, this chapter presents a governance framework based on five related pillars. These pillars aim to balance innovation with accountability, fairness, and social trust. Firstly, AI systems should be treated as human-AI hybrids. In this approach, algorithmic tools serve mainly as decision-support mechanisms, not as independent authorities. Educators, administrators, and policymakers must keep ultimate responsibility for interpretation and action. This ensures that professional judgment, context, and ethical reasoning stay at the heart of educational decision-making. Secondly, strong data governance is essential. This requires clear “do no harm” principles. The systematic use of techniques for anonymization and de-identification is important. Additionally, data must be secured through encryption during storage and transfer, along with transparent rules about data retention, sharing, and deletion. These steps are vital to protect learner privacy, safeguard vulnerable groups, and maintain public trust in AI-driven educational systems. Thirdly, ongoing capacity building is crucial for tackling inequalities in access to AI technologies. Fair investment in technical education, digital infrastructure, and open datasets can help bridge the gap in analytical skills between well-funded and underfunded institutions, as well as between regions in the Global North and the Global South. Without these efforts, AI could deepen existing educational and technological divides. Fourthly, explainability and regular auditing should be integrated throughout the AI lifecycle. Forecasting and analytics systems need accompanying clear documentation, understandable outputs, and ways for independent review to spot bias, errors, or misuse.

These practices improve transparency and support accountability in important educational settings. Lastly, creating shared norms and international standards is vital for managing the global spread of AI. Such frameworks can ban uses that enable surveillance, oppression, or discrimination while directing innovation toward applications that foster peace, inclusion, and sustainable educational growth.

CONCLUSION

In the perspective of this chapter discussion, the infusion of artificial intelligence (AI) in pedagogy signals a fundamental paradigm change regarding how education is organized, delivered and governed that brings with it transformational opportunities yet substantial ethical challenges. While AI-driven systems are capable of improving the monitoring aspect by detecting academic risk, disengagement or emotional health issues early on in learning environments and allowing for adaptive, personalized instruction. These include predictive analytics to forecast student success, learning dashboards that permit easy visualization of the performance in large cohorts as well as for individual students; and intelligent tutoring systems built so educators will be relieved from their manual administrative-related tasks or analyzing vast amount of data on student progress across various dimensions etc. AI and these capabilities show national promise in settings that have low resources, allowing the education system to use AI as a tool of augmenting instructional capacity or enhancing educational responsiveness. Likewise, this capacity of transformation is inextricably tied to the large ethical challenges that come from the deployment and use of AI systems without proper oversight or transparency or contextual awareness. If we allow algorithmic recommendations to be treated as authoritative (when they are designed simply in an advisory capacity) there is a real risk of replacing professional judgment, thereby shifting responsibility for key decisions that can shape the trajectory of learners. This is particularly true in educational contexts, where there is the potential for significant long-run severance of a student from an institution through assessment or placement initiated by decisions based on data that already have predictive value.

Accordingly, AI systems ought to be developed and regulated as supportive instruments for but not substitutes of educator expertise, ethical reasoning and relational engagement. This works best by embedding predictive and analytical tools within existing decision-making structures rather than creating parallel or opaque systems as we have seen so often from our past implementations. This necessitates explicit governance structures with clarifications on who does what and how AI-triggered alerts are raised, in cases when its outcomes run against human judgement or ethical mores.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

To cultivate confidence among educators, students and policymakers it is necessary to convey a sense of how models work, including what data sets they are built on and the methodological choices that have been made, as well as guidance about how outputs should be read. AI risks being viewed as undue technocratic imposition in the absence of such transparency, rather than a legitimate pedagogical aid. As significant is the uptake of human-centric governance methodologies that prioritize accessibility, justice and engagement. AI's introduction, evaluation and further development within education systems should involve stakeholders, including teachers, learners, parents, schools and communities. By working to adapt and diffuse the PUT principles in schools and communities, we can better position AI applications to support rather than erode local values, cultural contexts, and educational goals specifically around these more direct issues of how people interact with their institutions. With this participatory orientation around what might be called scaffolding (in the realm of copyright-free images or Creative Commons-derived image searches) important early "guardrails" are established covering potential unintended harms linking so much future work in libraries will do. In short, the overall ability and credibility of AI in pedagogy would come down rather to its institutional incorporation than merely a technological obsolescence index. AI is helpful only if we use it responsibly, ethically, and openly, making sure it includes everyone and respects human control. Think of AI less as replacing teachers and more as a tool. Its real worth comes when it fits well with schools, work standards, and democratic principles.

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

REFERENCES

Albrecht, E. (2023). Predictive technologies in conflict prevention: Practical and policy considerations for the multilateral system (UNU-CPR Discussion Paper). United Nations University, Centre for Policy Research. pp. 1-18. https://unu.edu/sites/default/files/2023-09/predictive_technologies_conflict_prevention_.pdf

Arana-Catania, M., Van Lier, F. A., & Procter, R. (2022). Supporting peace negotiations in the Yemen war through machine learning [Preprint]. arXiv. <https://doi.org/10.48550/arXiv.2207.11528>

Baker, R. S., & Hawn, A. (2021). Algorithmic bias in education. International Journal of Artificial Intelligence in Education, 31(2), 183-201. <https://doi.org/10.1007/s40593-021-00227-y>

Bueno, I., Hou, R., Bühler, B., Fütterer, T., Drimalla, J. K., Foster, J., Youngs, P., Gerjets, P., Trautwein, U., & Kasneci, E. (2025). Exploring automated recognition of instructional activity and discourse from multimodal classroom data. arXiv. <https://arxiv.org/abs/2512.00087>

Burrell, J. (2016). How the machine “thinks”: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 1-12. <https://doi.org/10.1177/2053951715622512>

Centre for Humanitarian Dialogue & United Nations Department of Political and Peacebuilding Affairs (UN DPPA). (2019). Digital technologies and mediation in armed conflict: A toolkit for mediators. HD Centre / UN DPPA. <https://www.hdcentre.org/wp-content/uploads/2019/07/Digital-Technologies-and-Mediation-in-Armed-Conflict.pdf>

Cross-Border Data Transfers – Legal Basis and Compliance. (2025). Osuntuyi & Tokan-Lawal Law. <https://otllaw.com/article-7-cross-border-data-transfers/>

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint. <https://arxiv.org/abs/1702.08608>

General Data Protection Regulation (GDPR). (2016). Regulation (EU) 2016/679 of the European Parliament and of the Council. <https://eur-lex.europa.eu/eli/reg/2016/679/oj>

Hamadeh, S., & Amin, H. (2025). AI, education and digital sovereignty. Frontiers in Education. <https://doi.org/10.3389/feduc.2025.1677727>

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

Ianese, D. (2024). AI, power, and asymmetric influence in international mediation. *International Studies Review*, 26(2), 245-263. <https://doi.org/10.1093/isr/ivad021>

International Journal of Educational Research. (2024). Artificial intelligence in classroom discourse: A systematic review of the past decade. <https://doi.org/10.1016/j.ijer.2023.102275>

International Journal of Educational Technology in Higher Education. (2021). The impact of artificial intelligence on learner-instructor interaction in online learning. <https://link.springer.com/article/10.1186/s41239-021-00292-9>

International Telecommunication Union (ITU). (2022). Populations digitally excluded from education: Issues, factors, contributions and actions for policy, practice and research in a post-pandemic era. *Interactive Learning Environments*. <https://link.springer.com/article/10.1007/s10758-024-09767-w>

Katapally, T. R. (2024). Navigating the digital world: Development of an evidence-based digital literacy program and assessment tool for youth. *Smart Learning Environments*, 11, Article 8. <https://slejournal.springopen.com/articles/10.1186/s40561-024-00293-x>

Khan, S., Ahmed, F., Shenouda, B., Cellini, J., Ray, K., Pabbaraju, C., Ashworth, H., & Nelson, E. (2024). Data analytics to support early warning and early action to prevent mass atrocities: A scoping review. Harvard Humanitarian Initiative. pp. 1-50. <https://hspf.harvard.edu/wp-content/uploads/2024/10/Scoping-Review-APL-Full-Report.pdf>

Kim, A., & Dennis, A. (2019/2025). Managing disinformation on social media platforms. *Electronic Markets*. <https://doi.org/10.1007/s12525-025-00796-6>

Luitse, D. (2024). Platform power in AI: The evolution of cloud infrastructures in the political economy of artificial intelligence. *Internet Policy Review*, 13(2). <https://doi.org/10.14763/2024.2.1768>

Maisiri, J., & Musonza, S. (2025). The cultural cost of AI in Africa's education systems. UNESCO.

Mgbomo, E. O., & Nkaanee, S. N. (2025). Artificial intelligence, neocolonialism, and the future of education in Nigeria. GPH-

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

International Journal of Educational Research, 8(02), 37-48.
<https://doi.org/10.5281/zenodo.14905352>

Nichols, J., & Garcia, P. (2022). The social life of AI in education. International Journal of Artificial Intelligence in Education.

O'Connor, K. E., et al. (2023). University students' and educators' perceptions on the use of digital and social media platforms: A sentiment analysis and multi-country review. iScience, 26(8), 107322.
<https://doi.org/10.1016/j.isci.2023.107322>

O'Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown Publishing.

Perception of Digital Privacy Protection: An Empirical Study using GDPR Framework. (2024). arXiv. <https://arxiv.org/abs/2411.12223>

Predictive Models for Educational Purposes: A Systematic Review. (2025). MDPI Cognitive Systems Research, 8(12), 187.
<https://doi.org/10.3390/cogsci120187>

Ramírez-Correa, P. E., Mariano, A. M., & Santos, M. R. (2025). Digital and sustainable education and social inclusion: A bibliometric review with a consolidated meta-analytical approach. Sustainability, 17(13), 5677.
<https://doi.org/10.3390/su17135677>

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135-1144). <https://doi.org/10.1145/2939672.2939778>

Schvitz, G., Corbane, C., Gentile, C., Bergmaier, A., & Vivancos, A. (2025). The future of conflict early warning: New technologies and policy impact. Workshop proceedings (Joint Research Centre, European Commission). Publications Office of the European Union.
<https://doi.org/10.2760/3432772>

Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019). Fairness and abstraction in sociotechnical systems. In Proceedings of the ACM Conference on Fairness, Accountability, and Transparency (pp. 59-68). <https://doi.org/10.1145/3287560.3287598>

*INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE*

Smart Learning Environments. (2024). Why explainable AI may not be enough: Predictions and mispredictions in decision making in education. <https://doi.org/10.1186/s40561-024-00343-4>

Trujillo, Y., et al. (2025). Artificial intelligence in education: A systematic literature review of machine learning approaches in student career prediction. *Journal of Technology and Science Education*.

United Nations Department of Economic and Social Affairs (DISD). (2025). Digital inclusion. <https://social.desa.un.org/issues/poverty-eradication/digital-inclusion>

Zhai, L., et al. (2024). Findings in AI-enhanced pedagogies in higher education in the Global South. *Frontiers in Education*.

CHAPTER 3
THE SYMBIOTIC RELATIONSHIP BETWEEN
CREATIVE EXPRESSION AND DESIGNED
ENVIRONMENTS: FROM PSYCHOLOGICAL
ORIGINS TO THERAPEUTIC OUTCOMES

¹Prof. Dr. Gianluca Pasquale TODISCO

¹University of Salerno, Adjunct Lecturer in School Experimentation and Educational Design Laboratory (M-Ped-04), Adjunct Lecturer in Special Education Didactics Laboratory: Logical and Mathematical Language Codes, Adjunct Lecturer in Non-Verbal Communication Languages and Techniques, Department of Human, Philosophical and Educational Sciences, gtodisco@unisa.it, ORCID ID: 0009-0007-5333-7618

INTRODUCTION

A profound, symbiotic relationship exists between the psychological origins of human creativity, the architectural design of spaces, the integration of art, and the resulting impact on human well-being and perception. This chapter explores the intricate connections that bind these domains, arguing that the environment we inhabit is a direct reflection of our inner creative spirit and, in turn, a powerful force that shapes our cognitive and emotional states. The analysis begins by deconstructing the anatomy of the creative process, establishing it as a universal human capacity that underpins all artistic and architectural innovation. It then examines the pivotal role of the architect as a mediator between abstract ideas and tangible reality, tracing a lineage of thought from Vitruvian principles to contemporary therapeutic design. Using mosaic art as a case study, the chapter investigates how artistic mediums can drive sustainable urban regeneration, fostering ecological responsibility and social cohesion. Finally, it delves into the emerging field of neuroaesthetics, presenting scientific evidence that quantifies the biological impact of art and architecture on the human nervous system. By synthesizing insights from psychology, architectural history, material science, and neuroscience, this chapter posits a holistic model for designing environments that not only serve functional needs but also actively nurture, heal, and inspire.

1. THE GENESIS OF FORM: UNPACKING THE CREATIVE SPIRIT IN ART AND ARCHITECTURE

Being able to learn primarily through practical, motor, and iconic activities, with a playful and/or constructive reflection, within laboratory settings where students work not just alongside one another, but with one another, represents a unique growth opportunity. This approach should span from nursery and preschool all the way through to upper secondary school. Group spirit develops most significantly during the initial period of schooling. At the age of seven, the plasticity of a child's mind begins to decrease; however, until at least the age of 18, it still offers significant margins for learning through educational intervention. This plasticity never disappears entirely: on the contrary, through continuous active exercise, human brain neurons develop new dendritic connections that enable, in particular the function of metacognition.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Metacognition is defined as "knowledge about knowledge" or "thinking about thinking," a term derived from the Greek prefix meta (beyond/above) and the Latin cognitio (to know). When discussing metacognition, reference is made to three major constructs: the knowledge each individual develops regarding their own mind and how it functions; the executive activities that regulate one's cognitive processes; and the processes of self-monitoring and control over those cognitive processes. The association between metacognition (the awareness and control of one's own cognitive processes) and creativity is one of the most fascinating areas of modern cognitive psychology. Where creativity was once perceived as an uncontrollable "stroke of genius," we now understand it as a structured process in which the mind not only generates ideas but also supervises and directs the process itself. The roots of art and architecture lie in the elusive creative spirit, not just in the materials we use. Goleman, Kaufman, and Ray (2017) challenge the myth of the lone genius, suggesting instead that creativity is a shared human trait that anyone can tap into. It's an inner drive to innovate and enhance the world around us, requiring us to uncover our own truths before we can express them outwardly. This journey of bringing our inner visions to life is beautifully captured in the works of Chuck Jones's animations and the Kyoto carver who seeks the Buddha hidden within the wood (Goleman et al., 2017).

The often romanticized "eureka" moment is actually the result of a multi-step process first outlined by Henri Poincaré. It kicks off with preparation, where we gather information while wrestling with mental blocks like functional fixity and self-censorship. Next comes a phase of frustration and incubation, where we step back and let our unconscious mind make new connections. Then, we reach the illumination stage, where a solution suddenly clicks into place, reminiscent of Friedrich Kekulé's realization of the benzene ring (Goleman et al., 2017). Yet, for a creative act to hold lasting significance, it needs to be both original and relevant. As Howard Gardner points out, novelty without practicality is just eccentricity; true creativity must offer a better way to meet a need (Goleman et al., 2017). This brings in a social aspect, where a community must recognize and validate the work, transforming it from personal ingenuity into a cultural contribution.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

In the end, the architect plays a vital role in this process, translating universal imagination into livable spaces that fulfill functional needs, reflect cultural values, and enhance human well-being.

2. THE ARCHITECT AS MEDIATOR: SHAPING ENVIRONMENTS FOR HUMAN EXPERIENCE

The role of an architect is crucial as they bridge the gap between imaginative creativity and the practical needs of society. They consciously shape human experiences, striking a balance between functionality and psychological well-being (Alberti, 1988). This relationship has deep roots, tracing back to Marcus Vitruvius Pollio, who, in his 1st-century B.C. work *De Architectura*, laid out the essential principles of *firmitas*, *utilitas*, and *venustas*. Vitruvius connected these ideas to the proportions of the human body and was a pioneer in promoting environmental health through his recommendations on site selection and building orientation (Vitruvius, n.d.). This comprehensive approach continued to develop during the Renaissance, particularly through the work of Leonardo da Vinci, whose Vitruvian Man and designs for "ideal cities" integrated anatomical and medical insights into urban planning to enhance public hygiene (Da Vinci, n.d.). Leon Battista Alberti further built on these health-focused ideas in *De re aedificatoria*, while Filippo Brunelleschi's *Ospedale degli Innocenti* serves as an early example of modern therapeutic spaces (Alberti, 1988). In today's world, Renzo Piano describes the architect as a synthesizer who "sews the urban fabric," intertwining history, technology, and human needs (Renzo Piano, 2012).

Contemporary theories have reinforced these historical insights with scientific backing, as highlighted in Kenneth Frampton's concept of "critical regionalism," which promotes sustainable, locally-focused designs that push back against globalization (Frampton, 2001). These initiatives have led to the development of Evidence-Based Design (EBD) and biophilic design, a term popularized by E.O. Wilson to highlight our inherent biological connection to nature (Wilson, 1984). Nowadays, scholars such as Leonardo Benevolo emphasize the importance of the environment in fostering social well-being. Similarly, Marc Augé highlights how spatial contexts shape human experience and social relations.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

This philosophy is reflected in projects like the Ospedale Pediatrico Meyer and the Nuovo Policlinico di Milano, which use light and nature to transform medical spaces into healing environments.

3. MATERIAL MANIFESTATIONS: MOSAIC ART IN SUSTAINABLE URBAN REGENERATION

Mosaic art is a fascinating example of how creative expression, architectural design, and sustainable urbanism can come together. This art form has its roots in ancient Mesopotamia and has evolved through the stunning Byzantine works in Ravenna, now experiencing a modern revival. As Paul Golder noted in 2010, mosaics are increasingly being used to breathe new life into overlooked urban spaces like transit stations and public squares, enhancing the visual appeal and strengthening the community ties within the city. At the heart of mosaic art is the idea of "recupero", or recovery, where beauty emerges from transforming broken pieces and discarded materials into a unified work of art (Golder, 2010). This approach aligns beautifully with circular design principles and responds to Kenneth Frampton's 2001 call for an architectural philosophy that emphasizes waste reduction and the appreciation of local resources. By viewing waste as a valuable artistic resource, mosaics become not just visually stunning but also a powerful ecological statement. Moreover, mosaics play a vital role in fostering social connections through collaborative projects that invite residents to help shape their surroundings. This process symbolizes community building, turning neglected urban areas into sources of collective pride (Frampton, 2001). The integration of art into public spaces is supported by laws like Italy's Legge 717/49, which requires art in public construction. Architectural historian Luciano Patetta argued in 1995 that art should be an essential part of the design process, not just an afterthought. Ultimately, mosaics create a harmonious blend with architecture, paving the way for exploring how these environments can significantly influence our minds and bodies (Patetta, 1995).

4. THE RECIPROCAL GAZE: HOW ENVIRONMENTS AND ART SHAPE HUMAN PERCEPTION

Neuroaesthetics is the newest interdisciplinary approach to studying how the human biological system experiences art and architecture. The brilliant Italian scientist Rita Levi Montalcini maintained that: “What many ignore is that our brain is made of two brains. An archaic, limbic brain, located in the hippocampus, which has practically not evolved for three million years, and does not differ much between *Homo sapiens* and lower mammals. It is a small brain, but it possesses extraordinary strength. It controls all emotions. It saved the *Australopithecus* when they descended from the trees, allowing them to face the ferocity of the environment and their aggressors. The other brain is the cognitive one, much younger. It was born with language and, in 150,000 years, has experienced extraordinary development, especially thanks to culture.” (Levi-Montalcini, R., 2006).

Researchers at the Laboratorio di Neuroestetica in Florence, Italy, track the biological effects of art using digital, non-invasive biomarker technologies. With the integration of EEG, ECG, and AI biosensors, scientists are able to quantify the cognition and emotion of an individual in response to art and architecture. Researchers found that the perception of art is not an isolated event. It is social, contextual, and empathic. People who view art together often experience large-scale contractions and synchronizations in their heart and brain systems. With tailored, pre-visit containment, art and history museums are able to lower the stress levels of patrons, thereby turning the cultural repositories into therapeutic “places of care.” This methodological approach demonstrates the possible integration of architectural design with the tenets of the social sciences (Rossi, 2025). In line with the work of Vitruvius, who claimed that elements of design, such as the manipulation of light, shapes and forms, had real influence on the health of an individual, neuroaesthetics validates that the predictions have measurable health outcomes. This multisector integration demonstrates a new approach to foundational design that prioritizes human health and emotional welfare, not a superficial design appeal.

5. THE GCT MODEL: OPERATIONALIZING ART INCLUSION THROUGH GESTALT PRINCIPLES AND MEDIATED PEDAGOGY

The GCT (Graphic Circle Time) serves as the practical implementation of the Art Inclusion Methodology (Todisco, 2025) and presents itself as a rigorously structured didactic model. Every phase of the process, beginning with the preparation of the environment, constitutes a deliberate educational act designed to convey care and respect. The spatial arrangement is specifically engineered for small-group work to foster an intimate atmosphere, utilizing a circular configuration that eliminates hierarchical barriers and promotes equity. High-quality materials are employed to bestow value upon the creative output (Munari, 1981), all within a reassuring ritualistic framework symbolized by elements such as the "special tablecloth." This pedagogical journey typically unfolds over a cycle of three sessions, providing the necessary scaffolding to maintain the student within their Zone of Proximal Development (Vygotskij, 1934).

Observing the illustrative example of a "train," one can trace an evolution that begins with a focus on the singular object, transitions through the addition of a narrative element, and culminates in the creation of a complex spatial context. Within this scenario, the teacher-mediator applies Gestalt Laws to actively stimulate cognitive engagement; specifically, the utilization of the "Law of Closure" through incomplete stimuli and ambiguous figures serves to exercise mental flexibility and promote the understanding of multiple perspectives on reality, a concept foundational to authentic inclusion (Carluccio, 2004).

Furthermore, the meticulous selection of materials and technical mastery of tools (Carluccio, 2004) are not merely aesthetic preferences but critical didactic decisions that expand the child's expressive lexicon and define the mediation process. Given that synesthetic artists experience colors as musical notes, the profound connection between diverse art forms can significantly enrich student formation. According to Carluccio (2004), artistic techniques are distinguished by specific expressive properties that dictate their ideal application.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

While pencils and pastels offer high levels of control for delicate details and shading, felt-tip markers provide immediate incisivity through bold strokes and vibrant fills. In the realm of water-based media, watercolors are characterized by transparency and lightness achieved through glazing, contrasting sharply with the opaque density of tempera, which allows for chromatic layering. Acrylic colors further bridge this gap by combining the versatility of tempera with superior brilliance and pigment permanence upon drying.

This technical competence is augmented by an understanding of Color Psychology. Awareness of the symbolic meanings of colors, such as red for energy, blue for tranquility, and yellow for joy, is not utilized for clinical diagnosis but rather to enhance the mediator's capacity for "Empathetic Listening." This allows the educator to grasp the affective resonances within the child's chromatic choices, facilitating a deeper and more meaningful dialogue during the narrative phase (Carluccio, 2004). Equipped with these multifaceted tools, the student is prepared to explore the significance of their work as the pedagogical focus shifts toward the cultivation of higher-order thinking skills.

6. THE P.A.C. METHOD (PEDAGOGY, ART, COMMUNICATION)

This method, created by Cinzia Urbano, proposes an integrated intervention pedagogy where teaching is no longer a simple transmission of knowledge but becomes a form of "doing." This approach is capable, for example, of transforming a negative emotional experience into awareness and avoiding the pathologization of deep communication between body and psyche. As John Dewey maintained, this process allows for the development of artistic products, "knowing how to do," and "knowing how to be" (critical thinking, imagination, observation skills), all of which are indispensable prerequisites for individual autonomy (Dewey, 1934).

Creativity, of which art is a primary product, is fueled by emotionally experienced environmental stimuli and facilitated by a well-organized brain that integrates cognitive and emotional processes. It becomes a method of self-education that renders thought original and flexible.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Within this framework, one can integrate the perspective of "care" referenced by Maurizio Fabbri, where deep, non-judgmental, and honest communication allows the Ego to observe its own "cracks" and reorganize itself. For this to occur, the contribution of Carl Rogers' person-centered approach, which turns the interpersonal relationship into a tool for change and the "awakening" of the soul, is fundamental (Rogers, 1951), as is John Bowlby's attachment theory, which demonstrates how the quality of primary educational care influences social development and the prevention of antisocial tendencies (Bowlby, 1989).

Montessori taught that children learn best when they can explore their environment; in this context, studies by Cowell and Decety show that children develop their moral sensitivity within a collective. Here, the teacher facilitates learning while remaining mindful of technological isolation, echoing Montaigne's view that education should simply improve who we are. It is a variation of the authority proposed by Crepet, one firmly rooted in listening and empathy. Considering that adolescence, and with it, the creativity typical of this developmental stage, extends from age 10 to 25 according to modern neuroscientific paradigms, it encompasses the entire educational journey: from the final years of primary school through secondary and university education. This extended timeframe takes on significant psycho-pedagogical importance, as it clearly demonstrates the necessity for consistent guidance throughout the slow maturation of the prefrontal cortex and the challenging transition toward autonomy.

As stated, among other things, by Stefano Rossi, psycho-pedagogist and author, during a recent hearing on May 7, 2025, at the Italian Senate regarding Adolescents and Social Media:

"The question is: do we think with our adolescents? I believe this: the thing that scares me most about our time is not the digital world, but acceleration. We could say that, in many respects, 'speed' is the name we should give to hell today. Because of hyper-speed, we are all more or less ill and stressed. Speed corrodes our bonds and pulls us away from our loved ones, even when we are physically present. It carries us away from our children and, as a philosopher once said, time is the material we are made of.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Time is the fundamental ingredient; that time which is fragrant and warm is the very substance of love at every level. As a parent, I feel compelled to make two very schematic observations. The first seems obvious: giving a mobile phone to a child is extremely dangerous. The Internet is a 'world of worlds'; you would never leave your child alone at Milan Central Station, because their prefrontal cortex is not yet able to weigh risks or recognize problems.

Then there is the issue of adolescents. Some of my colleagues advocate for a ban until the age of 16. I myself, twelve years ago, when I managed many listening centers in schools, proposed this solution. MySpace and Facebook (which at the time was for young people what Instagram is today) had just been born and, having the well-being of the kids at heart, I suggested banning everything. But then, when you have an educational theory, you must clash it with practice. The complexity I recognized is this: those extraordinary parents who fought not to give phones to their children made a great educational effort but, even ten years ago, thirteen or fifteen-year-olds without smartphones ended up being socially isolated.

We must understand something important: one can survive adolescence without love, suffering terribly, but managing, but one cannot survive without friendship. It is no coincidence that you keep a special place in your heart not so much for childhood friends, but for those friends who allowed you to survive adolescence. If the parent is the 'safe harbor,' the task of the adolescent is to set sail, and to do so, they must be able to dock somewhere.

We are facing a complexity that maintains a quota of 'not knowing' at the very heart of knowledge. For this reason, I am convinced that with adolescents, we must evaluate every single case. Every boy and girl is a world. Lévinas said that every child is a 'proper noun': two siblings raised in the same family are often night and day. We must weigh our intervention based on each specific child.

I am a fan of Socrates: he walked through the polis and thought with the youths. I do not believe a ban until age 16 solves everything, but we must be very clear with the platforms. Our children's prefrontal cortex is not fully structured until age 25, and their dopaminergic system is more prone to addiction than ours.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

How can the 'educational tortoise' compete with the 'technological hare'? We cannot win this challenge on the ground of speed. If even the experts say they are falling behind the acceleration of ChatGPT, the only solution is to invest in slowness. We must 'lose time' to reclaim time.

I often tell teachers: be careful, because sometimes you criticize the Internet but replicate the same model: a bulimia of information and an anorexia of thought. Even in the classroom, we should explain less and think more, engaging in cooperative experiences. Let us ask ourselves honestly: why do adolescents take refuge in social media or Fortnite? What social spaces have we left for this generation, besides the shopping mall or the nightclub?

The digital world is reconfiguring their emotional experiences. I often collaborate with law enforcement, and when tragedies or stabbings occur, I see boys who are physically imposing but confess they are afraid: at the slightest conflict, the other becomes a beast, and they become beasts too. It is the 'ancient mind' taking over. Freud, quoting an English poet, said that civilization was born when one of our ancestors, instead of hurling a poisoned arrow, hurled a word.

Today, this generation lives online: they can learn more, as Roberto Bolle says about young dancers who have more stimuli and models, and that is the 'light' part. On the other hand, however, we see the shadow: girls who practice self-harm and boys who reach for knives. This happens because they are no longer used to looking each other in the eye. We should think of a 'diet' for life, a nutritional system of real experiences to offer them.

This is an extraordinary generation: they are fragile and beautiful, more inclusive than us, angry and depressed, but still capable of dreaming. To parents, I say: I know finding time is the hardest thing, but referring to Bowlby, the master of attachment theory, remember that if the parent is there, with their limits and their exhaustion, and keeps an open heart, they are not just an external safe harbor. The adolescent internalizes that safe harbor, and that is exactly what, in moments of storm, will help them not to plummet." (Rossi, 2025). In this regard, it is interesting to reread and reflect upon this ever-relevant thought by Giuseppe O. Longo: 'I wish to conclude with an observation on the relationship between learning and emotions.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Learning, that is, the conversational, cognitive, and active practice that unites teachers and students in school throughout the long journey of education, is a dynamic communicative process which, by its nature, is impervious to reductionism. Within it, it is important to consider, alongside the messages exchanged, the contexts of these messages and the relationship between those in dialogue. Information, meaning, form, and structure are created and evolve within the complicated and shifting relationship between those who speak and those who listen.

In this relationship, the exchanged messages are important, but so are the emotions and the affective nuances that teachers, like students, know how to perceive and appreciate because they are, first and foremost, human beings. As such, they possess an innate baggage of communicative skills that, except in certain pathological cases, is exercised and refined from birth through interactions with the environment and others. These shared abilities allow, or at least allowed in the past, for interactions that were almost always satisfying, without the need to codify or analyze them too deeply. Today, indeed, due to the rapidity of change, we feel forced into a meticulous and often anxiety-inducing analysis. But, despite this, I am quite convinced that two human beings generally manage to converse, passing each other information, meanings, notions, and emotions, provided that the channel of sympathy and attention has been opened. Perhaps this is the most delicate task; perhaps this is the gift that was once referred to as a "vocation" for teaching.

We are all made of the same genetic material and we all live in the same world; therefore, despite all the limitations of verbal language (and other languages), communicating should not, after all, be so difficult, provided, indeed, that the communication channel is open. The key to this channel lies in the interpersonal, pre-communicative, and emotional relationship between the parties. It is precisely the absence of the emotional and sympathetic aspect of communication that can represent a serious obstacle to teaching by means of machines.” (Longo, 1999).

7. AN OPERATIONAL PROPOSAL FOR ENHANCING CREATIVITY: THE FANTASIA ASSESSMENT MODEL

The Italian researchers Galluzzi and Mazzotta (psychologists) & Olmetti Peja and Tornar (pedagogists), in a 1992 paper, stated: "Those who believe that imagination is '... an impetuous vortex that seizes the spirit under a circle of stars...' should not go beyond these words, because we believe that when one decides to investigate a phenomenon, it must be defined by its components in operational terms." In line with psychological inquiry, we have sought and continue to seek the concrete aspects of the so-called "impalpable." The result: old and new questions! Research on creative thinking is numerous and follows different lines of inquiry. Guilford noted, in 1950, a lack of studies on creativity and the need to turn to investigations into thinking processes, even if they pose difficult problems of evaluation and measurement (cf. Beaudot, 1973).

Subsequent studies dealt with creativity on both a purely cognitive and social level (Getzel and Jackson, 1962; Wallach and Kogan, 1965; Anderson and Cropley, 1966). Research undertaken according to different theoretical approaches (cognitive, psychoanalytic, environmentalist, etc.) has enriched this area of inquiry on both quantitative and qualitative levels, leading to a definition of the pedagogy of creativity today, centered on increasing the expressive potential present in the individual (Anderson, 1959).

Guilford was the first to propose a definition of creativity, identifying it with factors of divergent thinking that describe it operationally. We present these below as they appear in the cognitive section of the "Fantasia" Assessment: fluency is the capacity to produce many ideas [...]; flexibility is the capacity to pass from one category to another [...]; originality is the ability to give unique, rare responses [...]..." (Galluzzi, Mazzotta, Olmetti Peja & Tornar, 1992).

Therefore, based on the proposal of authors Galluzzi, Mazzotta, Olmetti Peja & Tornar, appropriately simplified and adapted to the contemporary school context, I have decided to adopt this operational proposal:

The "Fantasia" test is an instrument for detecting, evaluating, and increasing creativity, highlighting affective and cognitive peculiarities that allow the growth of the individual through an affective-intellectual behavior in relation to the objects of our experience.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

This tool can be an object of learning from the first years of school, functioning as an informative instrument that provides feedback on performance and as a formative one included in programs aimed at the education of creative thought. The assessment is organized into an affective area, consisting of an evaluation scale of behavior toward self (characterized by esteem and acceptance), toward the object (through interest and motivation), and toward others (through collaboration), and a cognitive area that includes verbal and graphic activities to detect divergent and convergent thinking skills. The cognitive section focuses on three factors of divergent thinking such as fluency, defined as the capacity to produce many ideas; flexibility, the capacity to pass from one category to another; and originality, the ability to give unique, rare responses. Convergent thinking is instead evaluated through the ability to find the only correct solution required by the stimulus.

Among the operational activities, in the “signs-drawings” task, the student is invited to trace many different drawings that include a stimulus sign, or in the “draw-words” activity, the teacher writes a stimulus word and invites students to draw all the objects that come to mind. Furthermore, in the “spark” activity, students use two conceptually distant words to construct a sentence that contains both, or they write all the titles that come to mind after the teacher reads a story. Another game consists of imagining the greatest number of possible consequences for strange hypotheses, such as: "What would happen if words solidified?" or "What would happen if sweets didn't let themselves be eaten?". In the “story” activity, the teacher writes the beginning of a possible story on the blackboard, such as "There was a bee that had shoes..." or "There was a professor who had wheels...", and the student continues it as they wish because the beginning of the story already suggests something extraordinary. The execution of the activities requires a specific time, generally four minutes for each hypothesis. The scoring system considers the number of hypotheses produced, the number of categories of concepts, and the unique or rare nature of the responses. The assessment is primarily composed of open items to solicit as many diverse responses as possible, providing an objective estimate of the mastery of specific skills learned in a determined time.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

In conclusion, the final objective of the tool is to disseminate and test teaching techniques aimed at developing students' creative potential, as the productive use of such skills allows creativity to be transformed into a field of systematic study and an opportunity for in-depth research within the classroom.

8. INCLUSION AND CREATIVITY PATHWAYS: BETWEEN SCHOOL CRISIS AND NEW SCENARIOS

Today, education and individual development are undergoing a phase of profound revision, driven by student distress. As Arletti's (2025) article recounts, the students' perception of school is: "A prison", "A madhouse", "A kennel". Interviewed for a research study, students describe it this way. Is this normal? Or is it an alarm bell? [...] A sociological study asked this of high school students. The result? A failing grade for the educational system. How would you describe your school with a metaphor? [...] The research involved 150 third- and fourth-year students from classical, scientific, artistic, and linguistic high schools, as well as a technical institute, in diverse areas, both wealthy and poor, of the Metropolitan City of Rome. The results are now published in *Scuola Democratica* by sociologist Rita Fornari. Title: *Giving Voice to Students: Metaphors on the School Experience* (Fornari, 2025).

In an era of brain rot and distorted reality, the physical environment and material art, such as the aforementioned mosaic, serve as an enduring source of truth and memory against oblivion.

Furthermore, it can be stated that: "It is challenging to put oneself in the shoes of a historian in the year 2100 who wants to describe the society of 2025. Between fake news, images, videos, and forged identities and bodies, which a rampant technology makes increasingly difficult to recognize as fiction those who will have access to the infinite archive of documents relating to our present may have to abandon the categories of true and false. [...] The falsification of reality affects democratic life, starting with election campaigns entrusted to bots, true disinformation machines. The consumption of trivial online content results in 'brain rot.' [...] Here, too, Arendt's thought supports us: in 1949, she spoke of the existence of 'holes of oblivion' where facts fall to be erased forever. She was referring to concentration camps.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

But in 1963 [...] she changed her mind: she said that holes of oblivion do not exist; no matter how much power you have, you cannot erase facts, because there will always be one person in the world to tell the story." (Ferraris, 2025).

To all this, it must be added that: "Inclusion presupposes a strong mediation in learning processes. Teachers suffer from diminished social standing. [...] Italian teachers, in particular, experience daily the difficulty of capturing the attention and motivation of students. [...] Classroom issues entail a 'fatigue' of teaching that is growing at a worrying speed. It is necessary to hypothesize that this role crisis can be identified in a type of teaching that is no longer adequate for the times. [...] Learning necessarily involves a cognitive and emotional destabilization which, if not properly accompanied, can generate aggression in students less capable of processing frustration. [...] The zone of proximal development varies from subject to subject. Imagine many types of animals with different digestive systems: if the same food is offered to everyone, it will be fine for some, while others will waste away. We cannot expect cats to be herbivores. To give equal growth opportunities, we must differentiate the diet [didactic approaches]." (Ianes & Cramerotti, 2018).

In this regard, Charlotte Valeur, a high-level finance expert nicknamed "the Cassandra of the City," spoke about her life experience. Over the last ten years, she has served on ten boards of directors in the financial sector, chairing three of them. Valeur's case demonstrates that "modulations of the cognitive spectrum," if understood and valued, can transform into incredible talents. In a recent interview, Valeur stated: "Charlotte Valeur, nicknamed 'the Cassandra of the City', and certainly not in a derogatory sense, says it somewhat cinematically, but she says it: 'My autism was my strength.' And indeed, in the last ten years, she has taken a seat on ten boards of directors in the financial galaxy, chairing three. She then founded the Institute of Neurodiversity in London, a think tank created first to defend and then to value anyone who has received a diagnosis of neurodivergence. That is to say: Attention Deficit Hyperactivity Disorder (ADHD), autism (she was diagnosed at age 52), dyslexia, bipolar disorder, Asperger's (Elon Musk boasted about it in a sketch on Saturday Night Live), and Tourette's. All those modulations of the cognitive spectrum, which for years remained the sad subject matter of support teachers, are now a propitious opportunity for headhunters..." (Valeur, 2025, p. 50).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

To escape school oppression and discover who we truly are, art plays a fundamental role. According to Massimo Recalcati (2025), painting goes beyond mere representation, becoming a way to explore the complexity of life: "Painting has an iconoclastic nature, in the sense that it never limits itself to reproducing so-called objective reality, to painting what already exists; it cannot be compressed within the limits of representation. This does not mean that art is an escape from reality. Quite the opposite. But its reference is never to the simply present presence of the object. [...] The true problem of art is never that of escaping from reality, but rather the traumatic encounter with the Real. The distinction between reality and the Real is by no means a given. It is proposed by Jacques Lacan as fundamental in the theory and practice of psychoanalysis." (Recalcati, 2025, pp. 4-5).

Through creative expression, individuals, especially those who are neurodivergent or adolescents, can give shape to that destabilizing 'reality,' transforming the breakdown into a song and chaos into a structured form.

In the course of the research conducted so far, Carlo Trombetta emphasizes that: "...it is fundamental to hypothesize some guidelines for an education that values all languages, including those of gestures, graphic-pictorial activity, three-dimensionality, and music." This passage highlights the urgency of overcoming the school model described as a "prison" or a "kennel". Trombetta suggests that the only way to escape this stagnant situation is to give dignity to languages that are not exclusively logical-verbal, thus opening a path of expression even for neurodivergent profiles, as in the case of Charlotte Valeur. Furthermore, Trombetta reminds us that: "The analysis of such a complex problem requires a revision of the very concept of the person, expanding it to dimensions broader than traditional ones." (Trombetta, 1976). This thought connects directly to the "cat and sheep" metaphor mentioned earlier regarding support teaching. If the school stops considering the student only through the lens of the "algebraic average" (Affinati's critique), it can finally begin to see the "person" in their entirety, including the unique talents of neurodivergence. For this reason, Trombetta states that: "...subjective and environmental conditioning would take on a different meaning if an attempt were made to recover an individual and social space through creative expression and a symbolic conception of reality." (Trombetta, 1976).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

At this point, it is interesting to compare the thoughts of Recalcati and Trombetta. While Recalcati describes painting as a way to "bring order to the unconscious" and face the traumatic "Real," Trombetta speaks of a "symbolic conception of reality" as a tool to free oneself from conditioning, whether social or academic. Art is not just an accessory, but a true means of both psychic and social survival (Trombetta, 1976).

For Affinati, school success depends not so much on "innovative methods" as on the empathetic relationship that can, or rather must, be established between teacher and learner. In fact, as he himself states in an interview given to Claudia Arletti: "What defines a 'good teacher'? And how does one become one? [...] We asked Eraldo Affinati [...]. Affinati, in your book you say that every classroom lives on 'moving variables.' What does that mean? 'That there are no single, infallible methods. Every person, both the student and the teacher, has their own character, sensitivity, tradition, and culture, and thus unpredictable emotional situations arise. What matters, then, is the quality of the human relationship.' Affinati, a writer and teacher, recalled his experience as a student: 'He suffered as a student, he says it often. 'I didn't have good teachers. Many extinguished my curiosity; it was only important that I sat still. Even as a teacher, later, I met colleagues with whom it was impossible for me to have good relationships. I remember one, at the beginning, who had devised an evaluation system with an algebraic average through which he humiliated some boys by assigning a -3.' Do you mean a 3? 'No, exactly -3, below zero. But I have met many, many positive figures. I am not a pessimist. I go from one school to another and I see them, the ones who make a difference: burdened with an enormous bureaucratic weight, they manage to give hope to their classes of adolescents. People who recognize merit, but know that pinning a gold medal on the winner's chest does not solve the problem of what to do with everyone else.'"

Despite rampant bureaucracy, the teacher is the one who must "give hope", especially to those adolescents who do not fit into the ranks of traditional "merit": "I saw myself as a writer; at 8 years old I had already decided. [...] Literature was the field of my aspiration. Tolstoy, Dostoevsky, Stendhal, Hemingway, Verga. Reading changes you. Without literature, I don't know what would have become of me.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Then, when I first stepped into a classroom as a substitute teacher, I felt the magnetism that surrounds those who are in the right place." (Affinati, 2025).

CONCLUSION

This chapter takes us on an intellectual journey, exploring how our inner creative impulses translate into the physical spaces we inhabit. It highlights the deep connection between design and our well-being, showing that innovation springs from the universal psychological process of creativity (Goleman et al., 2017). Architects harness this creative force to shape livable environments. The evolution of this process stretches from the foundational principles laid out by Vitruvius to the modern, human-centered approach of Renzo Piano, illustrating how abstract concepts can transform into the physical spaces that shape our daily lives. These principles come to life in sustainable mediums like mosaic art, which not only enhance community identity but also promote environmental recovery. The narrative gains further credibility through the findings of neuroaesthetics, which reveal that our reactions to art and architecture are measurable biological responses, not just personal tastes. This scientific perspective elevates therapeutic and biophilic design from mere decoration to a crucial aspect of public health. In the end, the text champions a holistic approach that redefines our cultural heritage. By transforming historic buildings, such as ancient convents and hospitals, into modern wellness centers, architects can connect our cultural memories with contemporary healing practices. This blend of art, science, and history marks a significant shift in urban planning, emphasizing that the most important role of architecture is to create spaces that nurture and heal the human spirit. To conclude in an overview of the discussions on education, there is a paradox of having a system that is carceral education, paradoxically, the potential of the individual is vibrant. Drawing on the remarks made by Recalcati, Affinati, and Trombetta, one would understand that there is a need for interpersonal and relational inclusion as there is a need for policy inclusion, as well as the need for a recognition of the creative and the non-verbal. The recognition of neurodivergence, especially in the classroom, in the future for us, is good, as it enables us to see the classroom as a space where, instead of a dead end, we have a range of functioning.

*INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE*

The ultimate end of education must be to go beyond moving the “algebraic average” to give the diverse selection of “nourishment” to all students who have the right to order their chaos into a voice.

*INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE*

REFERENCES

Affinati, E. (2025, September 5). Teaching is not a job for everyone [Insegnare non è un lavoro per tutti] (C. Arletti, Interviewer). *Il Venerdì di Repubblica*, (1955), 54–55.

Alberti, L. B. (1988). *On the art of building in ten books* (J. Rykwert, N. Leach, & R. Tavernor, Trans.). MIT Press. (Original work published 1485).

Arnheim, R. (1969). *Visual thinking*. University of California Press.

Augé, M. (1995). *Non-places: Introduction to an anthropology of supermodernity* (J. Howe, Trans.). Verso. (Original work published 1992).

Barreca, G., & La Varra, G. (2018). *New Policlinico Milan: A model of a contemporary hospital* [Nuovo Policlinico Milano: Un modello di ospedale contemporaneo].

Benevolo, L. (1977). *History of modern architecture* (H. J. Landry, Trans.). MIT Press. (Original work published 1960).

Bowlby, J. (1989). *A Secure Base: Parent-Child Attachment and Healthy Human Development*. Basic Books. (Original Italian edition: *Una base sicura: Applicazioni cliniche della teoria dell'attaccamento*. Raffaello Cortina Editore).

Carluccio, P. (2004). *Visual arts education* [Educazione all'immagine]. CUES – Cooperativa Universitaria Editrice Salernitana.

Da Vinci, L. (n.d.). *Anatomical codes* [Codici anatomici] [Manuscript].

De Bono, E. (1970). *Lateral thinking: Creativity step by step*. Harper & Row.

Dewey, J. (1934). *Art as experience*. Minton, Balch & Company.

Ferraris, M. (2025, September 5). Technology is not the cause but the symptom [La tecnologia non è la causa ma il sintomo] (M. Neri, Interviewer). *Il Venerdì di Repubblica*, (1955), 42–43.

Frampton, K. (2001). *Studies in tectonic culture: The poetics of construction in nineteenth and twentieth century architecture*. MIT Press.

Fornari, R. (2025, September 5). Down with school [Abbasso la scuola]: Metaphors on the school experience (C. Arletti, Interviewer). *Il Venerdì di Repubblica*, (1955), 20–22.

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

Galluzzi, M. P., Mazzotta, M., Olmetti Peja, D., & Tornar, C. (1992). *Fantasia. A proposal for creativity* [Fantasia. Una proposta per la creatività]. Nuova Paideia: rivista bimestrale del CIRMES, 11(4), 44.

Golder, P. (2010). *Mosaic art and architecture*. Thames & Hudson.

Goleman, D., Kaufman, P., & Ray, M. (2017). *The creative spirit* [Lo spirito creativo] (Original work published 1992). Rizzoli Libri.

Ianes, D., & Cramerotti, S. (Eds.). (2018). *Teaching Tomorrow - Special Education - Secondary School* [Insegnare domani - Sostegno - Scuola secondaria]. Erickson. (Excerpt: "The teacher: a role to rethink" and "The area of potential development").

Levi-Montalcini, R. (2006). *The ace up the sleeve: Shreds of memory* [L'asso nella manica: I brandelli di memoria]. Baldini Castoldi Dalai.

Longo, G. O. (1999). *Computer science, culture, and learning* [Informatica, cultura e apprendimento]. In *Strumenti per la scuola* [Dossier]. ITER: Scuola cultura e società, 2(6), 9. Treccani.

Munari, B. (1981). *One thing leads to another: Notes for a design methodology* [Da cosa nasce cosa: Appunti per una metodologia progettuale]. Laterza.

Patetta, L. (1995). *Art and public space in Italy: A legislative path* [Arte e spazio pubblico in Italia: Un percorso legislativo]. Gangemi Editore.

Piano, R. (2012). *Architecture is a tailor's craft* [L'architettura è un mestiere da sarti]. Feltrinelli.

Portoghesi, P. (1999). *Nature and architecture* [Natura e architettura]. Skira.

Recalcati, M. (2025, September 5). *Painting as a way of ordering the unconscious* [La pittura come modo di ordinare l'inconscio]. Il Venerdì di Repubblica, (1955), 4–5.

Rogers, C. R. (1951). *Client-Centered Therapy: Its Current Practice, Implications and Theory*. Houghton Mifflin. (Italian edition: *Terapia centrata sul cliente*. Giunti Editore).

Rossi, S. (2025, April 11). *What an emotion to go to the museum* [Ma che emozione andare al museo] (G. Cantafio, Interviewer). Il Venerdì di Repubblica, (1934), 26–27.

Todisco, G. P. (2025). *Art Inclusion Methodology*. [Metodologia di inclusione artistica]. In S. Cereci (Ed.), 9th International Antalya Scientific

*INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE*

Research and Innovative Studies Congress Abstract Book (pp. 607–617). Liberty Academic Publishers. ISBN: 979-8-89695-265-7.

Trombetta, C. (1976). Expressive activities [Le attività espressive]. Le Monnier. (From the series: "Small Encyclopedia of Educational Sciences" [Piccola Enciclopedia di Scienze dell'Educazione]).

Urbano, C. (2018). Educating with art P.A.C. Pedagogy Art Communication (I. Messuri, Pref.). StreetLib.

Valeur, C. (2025, September 5). My autism was my strength [Il mio autismo è la mia forza] (Excerpt from the article "Stories: Neurodivergences"). Il Venerdì di Repubblica, (1955), 50.

Vitruvius Pollio, M. (1914). The ten books on architecture (M. H. Morgan, Trans.). Harvard University Press. (Original work c. 15 B.C.).

Vygotskij, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds.). Harvard University Press. (Original works published 1930-1934).

Wilson, E. O. (1984). Biophilia. Harvard University Press.

CHAPTER 4

INTEGRATING IN SILICO PRACTICAL WORK IN HIGH SCHOOL LIFE AND EARTH SCIENCES EDUCATION: PEDAGOGICAL APPROACHES, DIGITAL TOOLS, AND FUTURE PERSPECTIVES

¹Ali AGUERD

¹Laboratory of Integrative Biology, Faculty of Science Ain Chock, Casablanca, University Hassan II, Morocco, aliagu97ninety@gmail.com, ORCID ID: 0009-0004-6819-2130

INTRODUCTION

Over the last two decades, digital technologies have profoundly reshaped educational systems worldwide. The integration of information and communication technologies (ICT) into teaching practices has been particularly significant in science education, where traditional laboratory activities are increasingly complemented or replaced by digital simulations and virtual experiments. In Life and Earth Sciences (SVT), practical work plays a central role in building scientific reasoning, developing experimental skills, and fostering conceptual understanding. However, classical laboratory-based practical work often faces substantial limitations, especially in secondary education contexts characterized by limited financial resources, lack of equipment, safety constraints, and overcrowded classrooms (De Jong et al., 2013); (Bain et al., 2022).

In response to these challenges, *in silico* practical work has emerged as an innovative pedagogical approach that enables students to simulate biological processes using computer-based tools. The term *in silico* refers to experiments conducted via computational models and digital environments rather than in physical laboratories (*in vitro*) or living organisms (*in vivo*). Initially developed in the field of bioinformatics and systems biology, *in silico* methods are now widely used in education to model molecular mechanisms, genetic regulation, metabolic pathways, and ecological interactions (Searls, 2012) (Elmoazen et al., 2023).

Several studies have demonstrated that virtual laboratories and computer simulations can significantly enhance students' conceptual understanding when appropriately integrated into inquiry-based learning frameworks. According to (De Jong et al., 2013), simulations provide learners with opportunities to visualize invisible biological processes, manipulate variables that are otherwise inaccessible in real laboratories, and test hypotheses in a safe and cost-effective environment. (Makransky et al., 2019) showed that although immersive VR environments increase learners' sense of presence and motivation, they may also induce higher cognitive load, which can negatively affect learning outcomes when instructional design is not carefully optimized.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

In genetic engineering education, *in silico* practical work offers significant pedagogical potential because DNA manipulation, restriction enzyme activity, PCR, and recombinant DNA construction are highly abstract and difficult for high school students to grasp (Duncan & Reiser, 2007). Conducting real experiments in school labs is often unfeasible due to ethical concerns, biosafety regulations, high costs, and the need for specialized equipment (Davidson et al., 2022). To address this, teachers benefit from professional development opportunities, such as Research Experiences for Teachers (RETs), which allow them to experience authentic scientific work and better support students' learning. Despite these efforts, students still struggle with understanding molecular genetics, particularly the mapping between genetic information and the physical entities (proteins, cells, tissues) that mediate its effects. *In silico* approaches, combined with well-prepared teachers, can help students overcome these conceptual challenges.

The use of bioinformatics databases such as GenBank and UniProt, combined with sequence analysis tools and virtual cloning platforms, offers a powerful alternative for teaching these complex concepts. Through *in silico* activities, students can search for genes, analyze nucleotide sequences, design primers, and simulate cloning procedures, thus engaging in authentic scientific practices that mirror real research processes (Bain et al., 2022) (Yarden & Yarden, 2010).

Furthermore, the integration of *in silico* practical work aligns with modern pedagogical paradigms emphasizing learner-centered instruction, problem-based learning, and the development of higher-order thinking skills. Digital simulations allow students to explore scientific problems autonomously, formulate hypotheses, test their ideas, and interpret results, thereby fostering deep learning and metacognitive skills (Smith et al., 2022) ; (Quintana et al., 2004).

Despite these advantages, the adoption of *in silico* practical work in secondary education remains uneven, particularly in developing countries where digital infrastructure and teacher training may be insufficient (GEM Report UNESCO, 2023).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Teachers often lack the methodological frameworks and technical skills required to design meaningful digital learning scenarios, leading to superficial or purely demonstrative uses of technology (Ertmer & Ottenbreit-Leftwich, 2010).

This chapter aims to address this gap by proposing a structured pedagogical model for integrating in silico practical work into SVT teaching at the high school level, with a particular focus on genetic engineering. It seeks to demonstrate how digital tools can be transformed from simple visualization aids into genuine instruments for inquiry-based scientific learning. By combining theoretical foundations, practical implementation strategies, and critical analysis, this chapter contributes to the ongoing reflection on the future of practical work in science education.

1. THEORETICAL FRAMEWORK OF IN SILICO LEARNING

1.1 Definition of In Silico Practical Work

In silico practical work refers to science learning activities conducted within digital environments using computer simulations, virtual laboratories, and computational models, rather than physical experiments in a traditional laboratory. This approach is grounded in the broad field of educational technology and aims to provide students with authentic scientific experiences that would otherwise be inaccessible due to resource, safety, or ethical constraints. In silico practices encompass activities such as sequence analysis, virtual cloning exercises, and simulation-based experimental design, all of which enable learners to explore biological phenomena through computational representations and tools. Recent empirical research highlights the effectiveness of such simulation based learning modules in improving conceptual understanding in biology and related disciplines, especially in contexts where physical experimentation is limited or unavailable (Kumar & Behera, 2025).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

1.2 Pedagogical Foundations

The integration of *in silico* practical work in education is supported by several well established pedagogical theories that emphasize active, learner centered instruction.

Constructivism. Constructivism posits that learners actively construct knowledge through interaction with their environment, building new understanding upon existing cognitive structures. This contrasts with passive reception of information from the teacher and places emphasis on experiential learning, reflection, and problem solving as central components of the learning process. Digital simulations and virtual labs align with constructivist principles by enabling students to manipulate variables, observe outcomes, and iteratively refine their understanding of complex scientific processes through exploration and experimentation (Costabile et al., 2025).

Inquiry based Learning (IBL). Inquiry based learning engages students in questioning, investigating, and reasoning similar to the practices of scientists. It fosters deeper conceptual understanding and scientific thinking by asking learners to explore open ended problems, design investigations, and draw conclusions based on evidence. Digital inquiry environments provide interactive platforms where students can formulate hypotheses, test them within a virtual setting, and reflect on outcomes, thus embodying the core stages of the inquiry cycle. Systematic reviews in science education confirm that IBL models, when coupled with supportive digital tools, strengthen students' scientific reasoning and engagement (Sam, 2024).

Problem based Learning (PBL). Problem based learning situates learning around complex, real world problems that do not have predetermined solutions. PBL shifts the teacher's role towards facilitator and the student's role toward active meaning making and collaboration. *In silico* platforms often present learners with digital problems—such as designing PCR primers or optimizing gene constructs—that mirror authentic research challenges and require critical thinking, collaboration, and sustained inquiry. Recent studies show that PBL fosters higher order thinking skills, confidence in problem solving, and the ability to apply scientific knowledge in novel contexts (Hafizah et al., 2024).

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Together, these pedagogical foundations encourage a shift from teacher centered instruction toward environments where students build conceptual models, test hypotheses, and engage in authentic scientific practices that mirror the epistemic activities of scientists.

1.3 Place of Digital Tools In Scientific Education

Digital tools play a central role in enabling *in silico* practical work within science education. They include interactive simulations, virtual laboratories, bioinformatics platforms, and collaborative learning environments that extend beyond traditional textbook and lecture formats. These tools serve not only as content delivery devices but also as cognitive and inquiry supports that scaffold student exploration and reflection.

For example, virtual labs allow students to conduct simulated experiments that would otherwise be impractical or unsafe in a high school setting, thereby expanding access to experiential learning. Similarly, online bioinformatics tools enable learners to search, analyze, and interpret biological data, effectively bridging the gap between theoretical knowledge and scientific practice. Comparisons between traditional and technology enhanced instructional methods in science education consistently demonstrate that digital tools can improve student engagement, understanding of complex concepts, and overall academic performance when thoughtfully integrated into pedagogy (Irna Ardhita & Imam Khanafi, 2024).

However, the effective use of digital tools for *in silico* learning depends on well designed instructional frameworks that integrate these technologies into broader pedagogical strategies rather than using them as isolated add ons. Teacher guidance, scaffolding, and reflection activities are essential to ensure that students engage meaningfully with digital simulations and do not treat them as mere demonstrations. When implemented within learner centered, inquiry oriented frameworks, digital tools become powerful instruments for fostering deep scientific understanding and inquiry skills aligned with contemporary educational goals.

2. GENETIC ENGINEERING IN THE HIGH SCHOOL CURRICULUM

2.1 Learning Objectives Related to Genetic Engineering

Teaching genetic engineering at the high school level is primarily aimed at helping students understand not only the conceptual foundations of genetics and molecular biology but also the modern tools and applications that define contemporary biotechnology. At the end of a well designed instructional sequence, learners should be able to:

- Define genetic engineering and distinguish it from traditional breeding and natural genetic variation, recognizing it as a process of modifying DNA to achieve specific outcomes.
- Describe and explain basic genetic engineering techniques, including gene isolation, cloning, and DNA modification, and understand their purposes and limitations.
- Identify real world applications of genetic engineering in fields such as medicine (e.g., therapeutic protein production or gene therapy), agriculture (e.g., crops with improved traits), and industry.
- Analyze the ethical, social, and environmental implications associated with the use of genetic engineering technologies, fostering responsible scientific citizenship.

These learning objectives align with established educational standards and lesson plans that guide biology instruction toward both cognitive understanding and practical scientific literacy. (Purbosari & Astuti, 2023)

By explicitly framing these goals, teachers can help students move beyond memorizing isolated facts toward integrative understanding of how genetic information can be conceptualized, manipulated, and applied across scientific domains.

2.2 Conceptual Difficulties Encountered by Students

Despite the importance of genetic engineering in modern science, research consistently shows that high school students encounter significant conceptual challenges when learning about genetic engineering and related genetics topics. These difficulties arise from multiple sources :

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

- Complex and abstract concepts. Genetic engineering involves invisible molecular processes and specialized terminology (e.g., genes, plasmids, vectors) that students often find difficult to reconcile with everyday biological understanding. Students frequently confuse related concepts such as DNA, genes, and chromosomes, which undermines their ability to build coherent mental models of these processes. (Kılıç Mocan, 2021).
- Misconceptions and limited conceptual frameworks. Many secondary students lack a robust conceptual foundation in basic genetics, which leads to fragmented or incorrect ideas about how genetic information is organized and manipulated. For example, misconceptions include beliefs that genetic engineering always produces new species or that it functions identically to traditional breeding methods. (Puputla & Tshuma, 2025).
- Language and terminology barriers. The unfamiliar scientific vocabulary and abstract nature of genetic engineering contribute to difficulties in comprehension. Specialized terms are often introduced without sufficient context or scaffolding, exacerbating student confusion. (Puputla & Tshuma, 2025)

These findings are consistent with broader studies in science education indicating that genetics and biotechnology topics represent some of the most challenging areas for secondary learners due to their multi level abstraction and requirement for connecting molecular mechanisms with observable outcomes. (Machová & Ehler, 2023).

2.3 Necessity of Simulation Based Learning

Given the conceptual difficulties associated with genetic engineering, simulation based and *in silico* learning approaches become pedagogically valuable. Traditional classroom instruction, often relying on textbooks and lectures, may not provide learners with sufficient opportunities to visualize and interact with complex molecular processes. Instead, digital simulations and virtual practical work allow students to:

- Explore processes that cannot be observed directly in a physical high school laboratory, such as restriction enzyme digestion or recombinant DNA construction.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

- Manipulate variables and observe outcomes, thereby making abstract concepts more concrete and supporting conceptual change.
- Engage in iterative experimentation and hypothesis testing within a safe and controlled environment, which mirrors authentic scientific practices.

Simulation based activities help bridge the gap between students' initial mental models and scientifically accurate understanding by providing dynamic representations of invisible processes and enabling repeated engagement with core ideas. This approach is particularly appropriate for genetic engineering education, where physical experimentation may be infeasible due to resource, safety, or ethical limitations.

By integrating in silico methodologies into the curriculum, teachers can support students in constructing robust conceptual frameworks, deepen scientific reasoning, and ultimately enhance both comprehension and interest in the life sciences.

3. DIGITAL TOOLS FOR IN SILICO GENETIC ENGINEERING

The integration of digital tools into teaching genetic engineering and bioinformatics is a key pedagogical strategy to overcome the limitations of physical laboratories and make complex molecular biology concepts accessible. Digital tools can be grouped into biological databases, sequence analysis software, simulation platforms, and virtual laboratory environments. Each type of tool helps students develop authentic scientific skills and concrete representations of abstract biological phenomena.

3.1 Biological Databases (NCBI, GenBank, UniProt)

Online biological databases are essential resources for in silico practices in genetics and biotechnology. They allow students to search, visualize, and analyze really genetic and protein sequence data. Major databases include :

- NCBI (National Center for Biotechnology Information): provides sequence data, annotation tools, and educational resources.
- GenBank: a public repository of DNA sequences, critical for comparative analysis and gene identification exercises.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

- UniProt: a comprehensive protein database offering information on function, structure, and expression.

Using these resources in education helps students understand how science generates, organizes, and utilizes large-scale biological data, enhancing the authenticity of simulated scientific practices. Studies recommend integrating these databases as pedagogical tools to support active and contextualized learning in modern biology (Sari et al., 2022).

3.2 Bioinformatics Software for Sequence Analysis

Specialized software enables students to analyze DNA or protein sequences, align sequences, design primers for PCR, and visualize molecular structures. Examples include:

- BLAST (Basic Local Alignment Search Tool): for comparing biological sequences to databases and identifying genetic similarities.
- MEGA (Molecular Evolutionary Genetics Analysis): for inferring phylogenetic trees and studying evolutionary relationships.
- UGENE: a free visual bioinformatics platform integrating multiple genomic analysis functions, suitable for teaching and student projects.

Learning to use these tools allows students to explore genomic data like professional researchers, developing both technical skills and conceptual understanding.

3.3 Virtual Laboratories and Simulation Platforms

Virtual labs and interactive simulations provide powerful pedagogical alternatives to physical experiments. These platforms let students manipulate variables, conduct “experiments,” and observe immediate outcomes without the constraints of lab safety or equipment.

- Labster: interactive simulations covering molecular biology and bioinformatics topics such as BLAST and gene expression analysis, with clearly defined learning objectives.
- Rosalind: a free educational platform teaching bioinformatics concepts through problem-solving activities, including sequence alignment, inheritance, and population dynamics.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Research shows that simulations improve understanding of complex concepts and increase student engagement when integrated into active, task-based pedagogy. (Sari et al., 2022)

3.4 Limitations and Access Constraints

Despite their potential, several limitations hinder the effective use of digital tools, particularly in developing educational contexts:

- Limited digital infrastructure: schools without reliable internet or computers struggle to access online databases and simulations.
- Teacher training needs: meaningful integration of these tools requires technical and pedagogical skills that many teachers lack.
- Language and curriculum alignment: few tools offer interfaces or educational resources adapted to the Moroccan secondary school curriculum, which can limit adoption.

3.5 Moroccan Initiatives and Resources

Although most studies on the use of bioinformatics tools in Morocco focus on higher education, they suggest that similar approaches could be adapted for high school biology. University-level initiatives demonstrate that interactive digital technologies can improve conceptual understanding in life sciences, indicating potential benefits for secondary education when properly adapted.(El Hammoumi et al., 2022)

Workshops and training organized by the Hassan II Academy of Science and Technology illustrate Morocco's institutional interest in integrating bioinformatics and genomic data into life sciences education, providing resources and support that could benefit secondary school teachers and students.

4. DIDACTIC SCENARIO: IN SILICO PRACTICAL WORK ON GENE CLONING

This didactic scenario presents a structured model for implementing an in silico practical activity on gene cloning in the high school Life and Earth Sciences curriculum.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

The scenario is designed to promote inquiry-based learning, conceptual understanding, and the development of scientific reasoning through the use of digital bioinformatics tools.

4.1 Pedagogical Context and Prerequisites

This activity is intended for students in the final years of high school, after they have studied the basic concepts of DNA structure, genes, genetic code, and protein synthesis.

Prerequisites include:

- Knowledge of DNA structure and base pairing.
- Understanding of the gene–protein relationship.
- Basic computer literacy (file handling, web navigation).
- Introductory understanding of PCR and restriction enzymes.

The activity can be implemented over two 90-minute sessions in a computer room or using students' personal devices if available.

4.2 Learning Objectives

By the end of this in silico practical work, students should be able to:

- Retrieve a gene sequence from a biological database.
- Interpret nucleotide sequences using online bioinformatics tools.
- Design PCR primers for a target gene.
- Simulate restriction enzyme digestion and cloning.
- Explain the steps of gene cloning using appropriate scientific terminology.
- Develop autonomy in scientific investigation and digital inquiry.

4.3 Description of the Activity Sequence

Step 1 – Searching for a Gene in Biological Databases

Students are provided with a research question such as:

How can we isolate and clone the human insulin gene for recombinant production?

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Using the NCBI Gene or GenBank database, students search for the human insulin gene (INS), identify its reference sequence, and download the FASTA file.

Student actions:

- Access the NCBI website.
- Enter “human insulin gene” in the search bar.
- Select the correct gene entry.
- Download the nucleotide sequence in FASTA format.

Step 2 – Analyzing the Nucleotide Sequence

Students analyze the downloaded sequence using BLAST or another sequence visualization tool.

Tasks include:

- Identifying coding regions.
- Locating the start and stop codons.
- Estimating gene length.

Step 3 – Designing Primers for PCR

Using an online primer design tool, students design a pair of primers suitable for amplifying the insulin gene.

Expected outputs:

- Forward primer sequence.
- Reverse primer sequence.
- Melting temperature (Tm) values.

Students justify their choices based on primer length and GC content.

Step 4 – Simulating Restriction Digestion and Cloning

Using a virtual cloning tool, students:

- Choose appropriate restriction enzymes.
- Simulate digestion of both the gene and plasmid vector.
- Insert the gene into the plasmid.

They observe how compatible ends allow successful ligation.

4.4 Student Tasks and Expected Productions

Table 1. Expected Deliverables for Gene Cloning Task

Task	Expected Production
Database search	FASTA file of the target gene
Sequence analysis	Annotated gene sequence
Primer design	Table containing primer sequences and characteristics
Cloning simulation	Screenshot or report of virtual plasmid construct
Scientific explanation	Written synthesis of the gene cloning process

4.5 Evaluation Criteria

Student performance is assessed using the following criteria:;

- Accuracy of gene retrieval.
- Correct identification of coding regions.
- Relevance and coherence of primer design.
- Logical reasoning during cloning simulation.
- Quality of scientific explanation and use of terminology.
- Ability to work autonomously and collaboratively.

This in silico scenario allows students to experience the full process of gene cloning in a realistic, safe, and accessible digital environment, fostering both conceptual mastery and scientific inquiry skills at the high school level.

5. PEDAGOGICAL BENEFITS OF IN SILICO PRACTICAL WORK

The integration of in silico practical work into high school Life and Earth Sciences education represents a significant evolution in teaching practices. These digital activities do not merely substitute traditional laboratory experiments but constitute a powerful pedagogical lever for improving conceptual understanding, fostering scientific reasoning, increasing learner motivation, and supporting differentiated instruction.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

5.1 Cognitive and Conceptual Benefits

Topics related to genetics, molecular biology, and biotechnology rely on microscopic and abstract mechanisms that are difficult for learners to visualize. *In silico* tools make these invisible processes observable and manipulable. Through interactive simulations, students can explore DNA sequences, simulate restriction enzyme digestion, visualize PCR amplification, or compare genetic variations.

This approach supports meaningful learning by helping students construct coherent mental models and by linking molecular-level processes with observable biological phenomena. Consequently, learners move beyond rote memorization toward deep conceptual understanding.

5.2 Development of Scientific Reasoning Skills

In silico practical work is inherently inquiry-based. Students are encouraged to formulate hypotheses, test variables, interpret datasets, and refine their strategies. For instance, selecting appropriate primers or restriction enzymes requires logical justification and critical thinking.

Such activities promote higher-order cognitive skills including problem-solving, argumentation, and analytical reasoning. They also foster scientific autonomy, enabling learners to adopt authentic research-like practices similar to those used by professional biologists.

5.3 Motivation, Engagement, and Learner Agency

Digital laboratories transform the learner's role from passive recipient to active investigator. Interactive environments stimulate curiosity and provide immediate feedback, making learning experiences more dynamic and meaningful.

By working with tools that mirror real scientific research platforms, students perceive their tasks as authentic, which strengthens intrinsic motivation and engagement while reducing disengagement and learning fatigue.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

5.4 Support for Differentiated Instruction

In silico activities offer remarkable flexibility. Students can progress at their own pace, repeat simulations without material constraints, and receive instant feedback. This allows teachers to design tasks adapted to individual learning profiles and cognitive levels.

Differentiation is therefore naturally embedded: advanced learners can explore complex datasets, while others may focus on foundational concepts, ensuring that all students achieve core learning objectives.

5.5 Accessibility, Safety, and Equity

Virtual laboratories overcome many logistical limitations of traditional experiments such as limited equipment, high costs, safety concerns, and time restrictions. They ensure equal access to high-quality scientific experimentation regardless of institutional resources.

This is particularly relevant in educational contexts where laboratory infrastructure is limited, enabling all learners to experience authentic scientific investigation in a safe and inclusive environment.

5.6 Preparation for Higher Education and Digital Literacy

By familiarizing students with bioinformatics platforms, data analysis tools, and simulation-based learning, in silico practical work prepares learners for university-level scientific studies. It strengthens digital literacy and data-handling competencies, which are essential skills in modern scientific and professional environments.

6. CHALLENGES AND LIMITATIONS

While in silico practical work offers substantial pedagogical benefits, its effective implementation in high school biology education is subject to several important challenges and limitations. These issues arise at both the technical and pedagogical levels and must be addressed to ensure that digital tools serve as meaningful educational resources rather than superficial additions.

6.1 Technical and Infrastructural Barriers

A fundamental challenge lies in the unequal distribution of technological resources. Many schools lack adequate computers, reliable internet access, or up-to-date software, impeding students' ability to use online bioinformatics tools and virtual laboratories. This digital divide is especially significant in resource-limited regions, where infrastructure constraints can exacerbate educational inequality and limit student participation in digital simulations. These infrastructural limitations restrict broad adoption and may unintentionally disadvantage students who cannot access or interact with *in silico* environments effectively. (Becker & Dreesmann, 2023).

6.2 Teacher Preparedness and Professional Development Needs

Teachers play a central role in the successful adoption of *in silico* activities. However, many high school biology teachers lack formal training in bioinformatics, computational modeling, and educational technology. Without targeted professional development, educators may feel unprepared to guide students through digital tools or integrate simulations meaningfully into classroom instruction. As research in digital biology education suggests, professional development is a critical determinant of whether digital innovations translate into improved learning outcomes. Teachers require both pedagogical frameworks and technical fluency to avoid superficial or misdirected use of technology. (Meuleners et al., 2025).

6.3 Cognitive Load and Complexity of Digital Tools

In silico platforms often possess complex interfaces and multifaceted functionalities that, while powerful, can overwhelm students—particularly those with limited digital literacy. Excessive cognitive load can shift the learning focus from understanding scientific concepts to mastering technical usage, potentially undermining the educational value of simulations. Research in STEM education highlights that without careful scaffolding and instructional support, students may struggle to manage information processing, leading to frustration or superficial engagement. (Sweller et al., 2011)

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

6.4 Balancing Virtual and Hands-On Experiences

Although digital simulations provide safe and resource-efficient alternatives to physical experiments, they cannot fully replicate the hands-on experience of traditional laboratory work. Tactile skills such as pipetting, precise manipulation of instruments, and observational subtleties learned in physical labs are difficult—or impossible—to achieve via software. An overemphasis on virtual activities may weaken students' procedural laboratory competence, which remains essential for scientific literacy and future laboratory work. (Machluf et al., 2017).

6.5 Curriculum Alignment and Assessment Challenges

Successfully integrating in silico activities requires alignment with national curriculum objectives and assessments. Many curricula do not yet incorporate computational biology or bioinformatics explicitly, making it challenging for teachers to justify allocating instructional time to digital tools. In addition, traditional assessment paradigms often prioritize factual recall over analytical thinking and data interpretation—skills that in silico activities are specifically designed to develop. Without restructured assessment practices, the full educational potential of simulations may remain untapped. (Meuleners et al., 2025).

6.6 Ethical and Data-Related Concerns

Some in silico tools involve the use of real biological data. Even in educational settings, issues such as data privacy, responsible use of biological information, and ethical interpretation of simulated results must be considered. Students need guidance on ethical decision-making and critical evaluation of datasets and simulations to ensure responsible scientific practice. These concerns parallel broader discussions in educational technology about the ethical use of data and digital tools. (Board on Life Sciences et al., 2025).

6.7 Resource and Equity Considerations

Lastly, implementing in silico practices may require investment in software licenses, server access, and long-term technical support all of which pose budgetary challenges for many schools.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

Without equity-focused policies, disparities can widen between well-resourced and under-resourced schools, counteracting the intended democratizing impact of digital learning tools.

Understanding and addressing these challenges is essential. Only through improved infrastructure, targeted teacher training, curriculum adaptation, meaningful assessment strategies, and ethical guidance can *in silico* practical work evolve from an innovative concept into a sustainable and impactful pedagogical approach for high school biology.

7. PERSPECTIVES AND FUTURE TRENDS

The rapid evolution of digital technologies is redefining the future of science education. In the coming years, the integration of artificial intelligence (AI) and big data analytics is expected to profoundly transform *in silico* practical work, making it more adaptive, personalized, and scientifically authentic for high school learners.

7.1 Artificial Intelligence in SVT Education

AI technologies enable learning systems to move beyond static simulations toward intelligent tutoring environments capable of adapting to students' cognitive profiles. Intelligent systems can analyze learners' interactions, detect misconceptions, and provide immediate, personalized feedback.

(Holmes et al., 2023) emphasize that AI-driven learning environments enhance metacognitive regulation and conceptual understanding by offering adaptive scaffolding and real-time guidance. Such systems are particularly relevant in complex domains like genetic engineering, where students often struggle with multi-level abstraction.

Application in SVT classrooms:

AI-based platforms could automatically analyze students' primer designs, detect errors in restriction site selection, and suggest corrective strategies, thus functioning as a virtual tutor.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

7.2 Integration of Big Data and Genomic Databases

Modern biological research is driven by large-scale genomic datasets. Introducing high school students to real biological databases such as GenBank or UniProt allows them to engage with authentic scientific data, promoting data literacy and critical analysis skills.

According to (Witte et al., 2024), working with large biological datasets improves students' ability to interpret patterns, formulate hypotheses, and understand the scale and complexity of contemporary biology.

Application in SVT classrooms:

Students can compare gene sequences from different organisms, analyze mutation frequencies, or explore expression data to understand genotype–phenotype relationships.

7.3 Toward Intelligent Virtual Laboratories

Future in silico laboratories will increasingly integrate AI with simulation engines, creating environments that not only simulate experiments but also interpret learners' actions. (Gudyanga, 2024) demonstrate that immersive virtual laboratories significantly improve learning outcomes when combined with guided feedback systems.

7.4 Ethical and Educational Implications of AI Use

The use of AI and big data in education raises critical ethical issues, including algorithmic transparency, data privacy, and fairness. Students must be trained not only to use these tools but also to critically evaluate their limitations.

7.5 Toward a Hybrid Pedagogical Model

The future of SVT education lies in a hybrid model combining in silico and in vitro approaches. While virtual environments develop analytical and computational skills, physical experiments preserve the tactile and procedural dimensions of laboratory science.

This complementarity is essential to ensure that students acquire a holistic scientific culture that integrates theory, data analysis, ethical reflection, and experimental practice.

INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN EDUCATIONAL PRACTICE

CONCLUSION

In silico practical work represents a transformative approach to Life and Earth Sciences education at the high school level. By leveraging digital tools, virtual laboratories, and bioinformatics databases, students gain access to experimental experiences that would otherwise be impossible due to safety, cost, or infrastructure limitations. These practices enhance conceptual understanding, foster scientific reasoning, promote learner engagement, and cultivate essential data literacy and computational skills.

The integration of artificial intelligence and big data in educational settings further expands the potential of in silico activities. AI-driven platforms can provide personalized guidance, adapt to learners' cognitive profiles, and offer real-time feedback, while big data analysis allows students to engage with authentic scientific datasets, promoting higher-order thinking and evidence-based reasoning.

However, the adoption of these technologies is not without challenges. Limitations such as technical infrastructure, teacher preparedness, cognitive load, ethical concerns, and curriculum alignment must be carefully addressed to ensure meaningful learning. A hybrid pedagogical model, combining in silico simulations with hands-on laboratory experiences, appears to be the most promising path for high school biology, allowing students to acquire both practical skills and analytical competencies in a holistic scientific context.

Ultimately, in silico practical work is not merely a substitute for traditional laboratory activities but a complementary strategy that prepares students for the evolving demands of modern biology. By integrating digital simulations, AI, and big data into SVT education, educators can cultivate scientifically literate, ethically aware, and technologically proficient students capable of navigating and contributing to the rapidly advancing field of biotechnology.

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

REFERENCES

Bain, S. A., Meagher, T. R., & Barker, D. (2022). Design, delivery and evaluation of a bioinformatics education workshop for 13-16-year-olds. *Journal of Biological Education*, 56(5), 570–580. <https://doi.org/10.1080/00219266.2020.1858932>

Becker, L., & Dreesmann, D. C. (2023). Simulating Environmental Issues: New Digital Tools to Teach Biology In Silico. *Sustainability*, 15(19), 14325. <https://doi.org/10.3390/su151914325>

Board on Life Sciences, Division on Earth and Life Studies, Board on Health Sciences Policy, Health and Medicine Division, & National Academies of Sciences, Engineering, and Medicine. (2025). Disseminating In Silico and Computational Biological Research: Navigating Benefits and Risks: Proceedings of a Workshop (A. F. Johnson, K. Pierce, A. Thévenon, K. Bowman, & J. D. Mouy, Eds.; p. 29174). National Academies Press. <https://doi.org/10.17226/29174>

Costabile, M., Birbeck, D., & Aitchison, C. (2025). Using simulations to meld didactic and constructivist teaching methods in complex second year STEM courses. *International Journal of Science Education*, 47(2), 173–190. <https://doi.org/10.1080/09500693.2024.2314010>

Davidson, S. G., Jaber, L. Z., & Southerland, S. A. (2022). Cultivating Science Teachers' Understandings of Science as a Discipline. *Science & Education*, 31(3), 657–683. <https://doi.org/10.1007/s11191-021-00276-1>

De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and Virtual Laboratories in Science and Engineering Education. *Science*, 340(6130), 305–308. <https://doi.org/10.1126/science.1230579>

Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students' understandings of molecular genetics. *Journal of Research in Science Teaching*, 44(7), 938–959. <https://doi.org/10.1002/tea.20186>

El Hammoumi, S., Zerhane, R., & Janati Idrissi, R. (2022). The impact of using interactive animation in biology education at Moroccan Universities and students' attitudes towards animation and ICT in general. *Social Sciences & Humanities Open*, 6(1), 100293.

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

Elmoazen, R., Saqr, M., Khalil, M., & Wasson, B. (2023). Learning analytics in virtual laboratories: A systematic literature review of empirical research. *Smart Learning Environments*, 10(1), 23. <https://doi.org/10.1186/s40561-023-00244-y>

Ertmer, P. A., & Ottenbreit-Leftwich, A. T. (2010). Teacher Technology Change: How Knowledge, Confidence, Beliefs, and Culture Intersect. *Journal of Research on Technology in Education*, 42(3), 255–284. <https://doi.org/10.1080/15391523.2010.10782551>

GEM Report UNESCO. (2023). Global Education Monitoring Report 2023: Technology in education: A tool on whose terms? (1st ed.). GEM Report UNESCO. <https://doi.org/10.54676/UZQV8501>

Gudyanga, R. (2024). Research Trends and Gaps in the Adoption of Immersive Reality Technologies in African Education Systems. *International Journal of Learning, Teaching and Educational Research*, 23(11), 232–253. <https://doi.org/10.26803/ijlter.23.11.12>

Holmes, W., Bialik, M., & Fadel, C. (2023). Artificial intelligence in education. In C. Stückelberger & P. Duggal (Eds.), *Data ethics: Building trust: How digital technologies can serve humanity* (pp. 621–653). Globethics Publications. <https://doi.org/10.58863/20.500.12424/4276068>

Irna Ardhita & Imam Khanafi. (2024). The Role Of Digital Tools in Teaching Science: A Comparative Study Of Traditional and Technology-Enhanced Methods. *International Journal of Mathematics and Science Education*, 1(2), 38–44. <https://doi.org/10.62951/ijmse.v1i2.91>

Kılıç Mocan, D. (2021). What do Students Really Understand? Secondary Education Students' Conceptions of Genetics. *Science Insights Education Frontiers*, 10(2), 1405–1422.

Kumar, R., & Behera, S. (2025). Study on Effectiveness of In silico Techniques in Biology Teaching among Rural Undergraduate Students. 16, 97487–97496.

Machluf, Y., Gelbart, H., Ben-Dor, S., & Yarden, A. (2017). Making authentic science accessible—The benefits and challenges of integrating bioinformatics into a high-school science curriculum. *Briefings in Bioinformatics*, 18(1), 145–159. <https://doi.org/10.1093/bib/bbv113>

**INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE**

Machová, M., & Ehler, E. (2023). Secondary school students' misconceptions in genetics: Origins and solutions. *Journal of Biological Education*, 57(3), 633–646. <https://doi.org/10.1080/00219266.2021.1933136>

Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. *Learning and Instruction*, 60, 225–236. <https://doi.org/10.1016/j.learninstruc.2017.12.007>

Meuleners, J. S., Lindermayer, C., Traub, D., Aufleger, M., Rutkowski, A., Kosiol, T., Reith, S., Arvaneh, B., Bannert, M., Ufer, S., & Neuhaus, B. J. (2025). Are Digital Tools More Often Implemented in High-Quality Lessons?—Profiles of Instructional Quality and the Use of Digital Tools in Biology and Mathematics Lessons. *International Journal of Science and Mathematics Education*, 23(5), 1439–1465. <https://doi.org/10.1007/s10763-024-10510-1>

Puputla, N., & Tshuma, D. T. (2025). High School Learners' Misconceptions in Genetic Engineering and their Possible Causes. *International Journal of Research in STEM Education*, 7(1), 136–150. <https://doi.org/10.33830/ijrse.v7i1.1769>

Purbosari, P. P., & Astuti, P. (2023). Students' Knowledge and Attitude toward Genetic Engineering. *Jurnal Penelitian Pendidikan IPA*, 9(1), 433–443. <https://doi.org/10.29303/jppipa.v9i1.2875>

Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J., Fretz, E., Duncan, R. G., Kyza, E., Edelson, D., & Soloway, E. (2004). A Scaffolding Design Framework for Software to Support Science Inquiry. *Journal of the Learning Sciences*, 13(3), 337–386.

Sam, R. (2024). Systematic review of inquiry-based learning: Assessing impact and best practices in education. *F1000Research*. <https://doi.org/10.12688/f1000research.155367.1>

Sari, I. J., El Islami, R. A. Z., & Safkolam, R. (2022). Implementation of Bioinformatics Learning in Senior High School: A Systematic Review. *International Journal of Biology Education Towards Sustainable Development*, 2(2), 87–98. <https://doi.org/10.53889/ijbetsd.v2i2.164>

Searls, D. B. (2012). An Online Bioinformatics Curriculum. *PLOS Computational Biology*, 8(9), e1002632.

*INTELLIGENCE-AUGMENTED LEARNING: NEW DIRECTIONS IN
EDUCATIONAL PRACTICE*

Smith, K., Maynard, N., Berry, A., Stephenson, T., Spiteri, T., Corrigan, D., Mansfield, J., Ellerton, P., & Smith, T. (2022). Principles of Problem-Based Learning (PBL) in STEM Education: Using Expert Wisdom and Research to Frame Educational Practice. *Education Sciences*, 12(10), 728. <https://doi.org/10.3390/educsci12100728>

Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive Load Theory. Springer. <https://doi.org/10.1007/978-1-4419-8126-4>

Witte, V., Schwerling, A., & Frischmeier, D. (2024). Strengthening Data Literacy in K-12 Education: A Scoping Review. *Education Sciences*, 15(1), 25. <https://doi.org/10.3390/educsci15010025>

Yarden, H., & Yarden, A. (2010). Learning Using Dynamic and Static Visualizations: Students' Comprehension, Prior Knowledge and Conceptual Status of a Biotechnological Method. *Research in Science Education*, 40(3), 375–402. <https://doi.org/10.1007/s11165-009-9126-0>

ISBN: 978-625-6080-75-1